学报(中文)

变偏角垂直轴潮流能水轮机纵荡运动水动力分析

展开
  • 1. 江苏科技大学 船舶与海洋工程学院, 江苏 镇江 212003; 2. 中国船舶科学研究中心, 江苏 无锡 214000; 3. 哈尔滨工程大学 船舶工程学院, 哈尔滨 150001

网络出版日期: 2018-03-28

基金资助

国家自然科学基金项目(51709137, 51579120, 51309125)

Hydrodynamic Analysis of Variable-Pitch Vertical Axis Tidal Turbine Under Surging Motion

Expand
  • 1. School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China; 2. China Ship Scientific Research Center, Wuxi 214000, Jiangsu, China; 3. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

Online published: 2018-03-28

摘要

采用水轮机旋转运动与强迫纵荡运动的组合模拟水轮机的波浪运动响应,并应用ANSYS CFX 软件对均匀来流中水轮机强迫纵荡时的流场和水动力特性进行分析,研究不同纵荡频率和纵荡幅值对水轮机水动力的影响规律.研究表明:与水轮机在均匀来流环境中仅做旋转运动相比,纵荡使水轮机尾涡间距发生疏密变化;水轮机水动力载荷瞬时值的峰值包络线均值产生较大波动,波动频率为水轮机纵荡频率,波动幅值随纵荡频率和纵荡幅值的增加而增加;载荷波动范围的最大值随纵荡频率和纵荡幅值的增加逐渐增加,而最小值却逐渐减小.研究结果可为潮流电站电能输出控制系统及水轮机结构强度校核提供参考.

本文引用格式

王树齐1,周念福2,张亮3,徐刚1 . 变偏角垂直轴潮流能水轮机纵荡运动水动力分析[J]. 上海交通大学学报, 2018 , 52(3) : 373 -378 . DOI: 10.16183/j.cnki.jsjtu.2018.03.017

Abstract

Under the condition of actual sea state, hydrodynamic characteristic of variable-pitch vertical axis tidal turbine is related to wave characteristics and floating carrier wave motion response. This paper simulates the wave response motion of the variable-pitch vertical axis tidal turbine by combining the turbine rotation and the axial forced surge. Using ANSYS CFX software, we analyze the flow field and hydrodynamic performance of the turbine with forced surge in the uniform flow, and study the influences rule of different surge frequencies and surge amplitudes on turbine hydrodynamic performance. The research results showed that compared with the turbine which only has rotation motion in the uniform flow, the surge motion leads to the change in the interval of wake vortex. The peak envelope mean value of turbine hydrodynamic loads makes an obvious fluctuation in surging. The fluctuation frequency is equal to the turbine’s surge frequency, and the fluctuation amplitudes have a positive correlation with the frequency and amplitude of the surge. The maximum fluctuation range of hydrodynamic loads gradually increases with the increasing frequency and increasing amplitude of the surge, while the minimum gradually reduces. The results of this study can provide a reference for turbine structural strength check.

参考文献

[1]ROURKE O F, BOYLE F, REYNOLDS A. Tidal energy update 2009[J]. Applied Energy, 2010, 87(2): 398-409. [2]WANG S, YUAN P, LI D, et al. An overview of ocean renewable energy in China[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 91-111. [3]LI D, WANG S, YUAN P. An overview of development of tidal current in China: Energy resource, conversion technology and opportunities[J]. Renewable and Sustainable Energy Reviews, 2010, 14(9): 2896-2905. [4]JU H L, PARK S, DONG H K, et al. Computational methods for performance analysis of horizontal axis tidal stream turbines[J]. Applied Energy, 2012, 98: 512-523. [5]BATTEN W, BAHAJ A S, MOLLAND A F, et al. The prediction of the hydrodynamic performance of marine current turbines[J]. Renewable Energy, 2008, 33(5): 1085-1096. [6]LI Y, CALISAL S M. A discrete vortex method for simulating a stand-alone tidal-current turbine: Modeling and validation[J]. Journal of Offshore Mechanics and Arctic Engineering, 2010, 132(3): 1-9. [7]CHOI H J, ZULLAH M A, ROH H W, et al. CFD validation of performance improvement of a 500 kW Francis turbine[J]. Renewable Energy, 2013, 54(6): 111-123. [8]SHENG Q H, KHALID S S, XIONG Z M, et al. CFD simulation of fixed and variable pitch vertical axis tidal turbine[J]. Journal of Marine Science and Application, 2013, 12(2): 185-192. [9]马勇, 张亮, 盛其虎, 等.漂浮式潮流能发电装置水动力特性试验研究[J].华中科技大学学报(自然科学版), 2012, 40(10): 123-127. MA Yong, ZHANG Liang, SHENG Qihu, et al. The test study on hydrodynamic characteristics of floating tidal power generation devices[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2012, 40(10): 123-127. [10]张学伟, 张亮, 李志川, 等. 潮流能自由变偏角水轮机限位角优化方法[J]. 哈尔滨工程大学学报, 2012, 33(11): 1341-1345. ZHANG Xuewei, ZHANG Liang, LI Zhichuan, et al. Optimization of limit angle for free variable-pitch vertical axis tidal turbine[J]. Journal of Harbin Engineering University, 2012, 33(11): 1341-1345. [11]张学伟, 王树齐, 庞程燕, 等. 潮流能自由变偏角水轮机自启动特性分析[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(5): 389-394. ZHANG Xuewei, WANG Shuqi, PANG Chengyan, et al. Self-starting characteristics of free variable-pitch vertical axis tidal turbine[J]. Journal of Tianjin University(Science and Technology), 2014, 47(5): 389-394. [12]WANG K, SUN K, SHENG Q H, et al. The effects of yawing motion with different frequencies on the hydrodynamic performance of floating vertical-axis tidal current turbines[J]. Applied Ocean Research, 2016, 59: 224-235. [13]王凯, 孙科, 张亮, 等. 艏摇对立轴潮流能水轮机的水动力性能影响[J]. 上海交通大学学报, 2016, 50(4): 563-568. WANG Kai, SUN Ke, ZHANG Liang, et al. Hydrodynamic performance of vertical axis tidal turbine under yawing motion[J]. Journal of Shanghai Jiao Tong University, 2016, 50(4): 563-568. [14]SHENG Q H, JING F M, ZHANG L, et al. Study of the hydrodynamic derivatives of vertical-axis tidal current turbines in surge motion[J]. Renewable Energy, 2016, 96: 366-376. [15]侯卫松. 竖轴潮流能水轮机偏角运动规律优化[D]. 哈尔滨: 哈尔滨工程大学船舶工程学院, 2013.
Options
文章导航

/