学报(中文)

基于马尔科夫模型的关联多工序 装配系统装配质量分析

展开
  • 1. 上海交通大学 机械与动力工程学院, 上海 200240; 2. 上海航天设备制造总厂, 上海 200245

网络出版日期: 2018-03-28

基金资助

国家科技重大专项(2014ZX04015-021)

Quality Analysis of Multi-Stage Assembly Systems Based on Markov Model

Expand
  • 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Shanghai Aerospace Manufacture Co., Ltd., Shanghai 200245, China

Online published: 2018-03-28

摘要

以关联多工序装配系统为研究对象,考虑上游工序对下游工序的质量影响,运用马尔科夫建模思想,建立了多工序装配系统的马尔科夫模型,提出了装配系统中瓶颈工序的判定方法.以某航天安溢阀门装配过程为案例进行装配系统的建模与质量分析,验证了关联多工序装配系统模型的准确性以及实用性.

本文引用格式

宋婷婷1,赵子任1,杜世昌1,任斐2,梁鑫光2 . 基于马尔科夫模型的关联多工序 装配系统装配质量分析[J]. 上海交通大学学报, 2018 , 52(3) : 324 -331 . DOI: 10.16183/j.cnki.jsjtu.2018.03.011

Abstract

In manufacturing systems, a product usually goes through a series of assembly stages before it is completely finished, making it of great significance to analyze the product quality in assembly systems. A Markov model is developed to evaluate the quality performance of assembly systems in this paper. The quality of a product is not only related to the state of the current stage, but also has something to do with the quality of coming parts from upstream stages. Quality propagation is taken into consideration along the assembly production line. Finally, a case of multi-stage assembly system of astronautical valve is used to validate the effectiveness of this Markov model.

参考文献

[1]JIN J, SHI J. State space modeling of sheet metal assembly for dimensional control[J]. ASME Transaction on Journal of Manufacturing Science and Engineering, 1999, 121(4): 756-762. [2]LOOSE J, CHEN N, ZHOU S. Surrogate modeling of dimensional variation propagation in multistage assembly process[J].IIE Transaction, 2009, 41(10): 893-904. [3]ZHOU Q, QIAN P Z G, ZHOU S. Surrogate modeling of multistage assembly processes using integrated emulation[J]. ASME Transactions, Journal of Mechanical Design, 2012, 134(1): 011002-1-10. [4]DU S, XU R, HUANG D, et al. Markov modeling and analysis of multi-stage manufacturing systems with remote quality information feedback[J]. Computers & Industrial Engineering, 2015, 88: 13-25. [5]刘银华, 金隼. 基于小数据集贝叶斯网络建模的偏差源诊断方法[J]. 上海交通大学学报, 2012, 46(5): 701-705. LIN Yinhua, JIN Shun. Bayesian networks modeling based on small samples for variation-source diagnosis[J]. Journal of Shanghai Jiao Tong University, 2012, 46(5): 701-705. [6]张根保, 刘佳, 葛红玉. 装配可靠性的动态贝叶斯网络建模与分析[J]. 中国机械工程, 2012, 23(2): 211-215. ZHANG Genbao, LIU Jia, GE Hongyu. Modeling and analysis for assembly reliability based on dynamic Bayesian networks[J]. China Mechanical Engineering, 2012, 23(2): 211-215. [7]ZHAO C, LI J. Analysis and improvement of multi-product assembly systems: An application study at a furniture manufacturing plant[J]. International Journal of Production Research, 2014, 52(51): 6399-6413. [8]INMAN R R, BLUMENFELD D E, HUANG N, et al. Survey of recent advances on the interface between production system design and quality[J]. IIE Transactions, 2013, 45(6): 557-574. [9]LI J S, HUANG N J. Quality evaluation in flexible manufacturing systems: A Markovian approach[J]. Mathematical Problems in Engineering, 2007, 2007(7): 57-76. [10]WANG J W, LI J S, ARINEZ J, et al. Indicators for quality improvability and bottleneck sequence in flexible manufacturing systems with batch productions[J]. International Journal of Production Research, 2012, 50(22): 6388-6402. [11]WANG J W, LI J S, ARINEZ J, et al. Quality bottleneck transitions in flexible manufacturing systems with batch productions[J]. IIE Transactions, 2013, 45(2): 190-205. [12]徐锐, 杜世昌, 任斐, 等. 基于马尔科夫模型的关联多工序系统加工质量分析[J].上海交通大学学报, 2015, 49(5): 669-674. XU Rui, DU Shichang, REN Fei, et al. Quality analysis of correlated multi-stage manufacturing systems based on Markov model[J]. Journal of Shanghai Jiao Tong University, 2015, 49(5): 669-674. [13]JU F, LI J, XIAO G, et al. Quality flow model in automotive paint shops[J]. International Journal of Production Research, 2013, 51(21): 6470-6483. [14]JU F, LI J, XIAO G, et al. A quality flow model in battery manufacturing systems for electric vehicles[J]. IEEE Transaction on Automation Science and Manufacturing, 2014, 11(1): 230-244. [15]WANG C, LI J. Approximate analysis of re-entrant lines with Bernoulli reliability models[J]. IEEE Transactions on Automation Science and Engineering, 2010, 7(3): 708-715. [16]MEERKOV S M, ZHANG L. Bernoulli production lines with quality-quantity coupling machines: Monotonicity properties and bottlenecks[J]. Annals of Operations Research, 2011, 182 (1): 119-131. [17]ZHANG L, WANG C F, ARINEZ J, et al. Transient analysis of Bernoulli serial lines: Performance evaluation and system-theoretic properties[J]. IIE Transactions, 2013, 45(5): 528-543. [18]NAEBULHARAM R, ZHANG L. Bernoulli serial lines with deteriorating product quality: Performance evaluation and system-theoretic properties[J]. International Journal of Production Research, 2014, 52(5): 1479-1494. [19]JIA Z Y, ZHANG L, ARINEZ J, et al. Performance analysis for serial production lines with Bernoulli machines and real-time WIP-based machine switch-on/off control[J]. International Journal of Production Research, 2016, 54(21): 6285-6301.
Options
文章导航

/