学报(中文)

基于Frenet标架的车门匹配

展开
  • 1. 上海交通大学 上海市复杂薄板结构数字化制造重点实验室,上海 200240; 2. 吉利汽车研究院,杭州 311228

网络出版日期: 2018-03-28

Automobile Door Fitting Based on Frenet Frame

Expand
  • 1. Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Geely Automotive Research Institute, Hangzhou 311228, China

Online published: 2018-03-28

摘要

为提高车门匹配的质量,首先从扫描点云提取边界轮廓,进行傅里叶级数拟合,以曲线论中Frenet标架为基础,求解曲线任意点处的单位切矢与副法矢,借鉴Hausdorff距离的概念,构建匹配质量的目标函数,将车门匹配表示为车门与侧围空间位置的优化,最后采用差分进化算法,全局搜索匹配优化的最佳变换参数,并结合车门匹配实例进行验证.结果表明,所提出的方法能显著改善车门匹配的一致性.

本文引用格式

衡德正1,羊军2,李志敏1,金爱军2,金隼1 . 基于Frenet标架的车门匹配[J]. 上海交通大学学报, 2018 , 52(3) : 318 -323 . DOI: 10.16183/j.cnki.jsjtu.2018.03.010

Abstract

In order to improve the fitting quality, firstly, contours are extracted from scanning data points to fit Fourier series, then unit tangent and binormal can be got at any point based on Frenet frame of curve theory, and the objective function of fitting quality referencing Hausdorff distance can be constructed. The global optimal transform parameter can be found based on differential evolution. Effectiveness of the method is demonstrated by one practical door-fitting example. Results indicate that the proposed method can significantly improve the fitting consistency and improve automobile dimension quality.

参考文献

[1]FAINBERG Z, ZUSSMAN E. Even fitting closed curves: 2-D algorithm and assembly applications[J]. Journal of Manufacturing Science and Engineering, 1999, 121(2): 265-272. [2]KHORZAD D, SHI J, HU S J, et al. Optimization of multiple panel fitting in automobile assembly[J]. Transactions of North American Manufacturing Research Institution of SME, 1995, 23: 241-246. [3]ZHU W F, ZHOU J Q. Optimal method for auto-body closure panel fitting using Hausdorff distance criteria[J]. The International Journal of Advanced Manufacturing Technology, 2010, 48(9/12): 1019-1029. [4]PEREZ-GARCIA A, AYALA-RAMIREZ V, SANCHEZ-YANEZ R E, et al. Monte carlo evaluation of the hausdorff distance for shape matching[C]∥Iberoamerican Congress on Pattern Recognition. Heidelberg, Berlin: Springer Berlin Heidelberg, 2006: 686-695. [5]罗来军, 来新民, 周志强, 等. 车身复杂曲线匹配优化问题研究[J]. 机械设计, 2002, 19(6): 10-14. LUO Laijun, LAI Xinmin, ZHOU Zhiqiang, et al.Study on the problems of matching optimization for complicated body curve of vehicle profile[J]. Machine Design, 2002, 19(6): 10-14. [6]许川, 吴昊, 王华, 等. 基于高斯映射的多误差源复杂结构匹配分析与优化[J]. 上海交通大学学报, 2013, 47(5): 840-845. XU Chuan, WU Hao, WANG Hua, et al. Matching optimization analysis of complex structure with multiple error sources based on Gaussian mapping[J]. Journal of Shanghai Jiao Tong University, 2013, 47(5): 840-845. [7]CHEN J, LEUNG M K, GAO Y. Noisy logo recognition using line segment Hausdorff distance[J]. Pattern Recognition, 2003, 36(4): 943-955. [8]RODRIGUEZ W, LAST M, KANDEL A, et al. 3-dimensional curve similarity using string matching[J]. Robotics and Autonomous Systems, 2004, 49(3): 165-172. [9]李庆扬, 王能超, 易大义.数值分析[M].北京, 清华大学出版社, 2008: 83-84. [10]BROOKS E B, THOMAS V A, WYNNE R H, et al. Fitting the multitemporal curve: A Fourier series approach to the missing data problem in remote sensing analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(9): 3340-3353. [11]ENDERS W, LEE J. A unit root test using a Fourier series to approximate smooth breaks[J]. Oxford Bulletin of Economics and Statistics, 2012, 74(4): 574-599. [12]ALT H, SCHARF L. Computing the Hausdorff distance between curved objects[J]. International Journal of Computational Geometry & Applications, 2008, 18(4): 307-320. [13]GAO X, WANG H, CHEN G. Fitting optimization based on weighted Gaussian imaging method for auto body taillight assembly[J]. Assembly Automation, 2014, 34(3): 255-263. [14]QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE transactions on Evolutionary Computation, 2009, 13(2): 398-417. [15]张春美. 差分进化算法理论与应用[M].北京, 北京理工大学出版社, 2014: 7-8.
Options
文章导航

/