学报(中文)

超高强度钢电阻点焊拉剪接头断裂模式的模拟分析

展开
  • 上海交通大学 上海市复杂薄板结构数字化制造重点实验室, 上海 200240

网络出版日期: 2018-03-28

Simulation Analysis on Fracture Modes of Ultra-High Strength Steel Spot-Welded Lap-Shear Joints

Expand
  • Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2018-03-28

摘要

以1.5mm热成形钢为例,建立超高强度钢点焊拉剪接头有限元模型,定义了热影响区几何尺寸及其材料属性,分析了熔核尺寸对点焊接头断裂模式的影响.结果表明:部分界面断裂模式在软化区发生并在焊核内沿板厚方向失效;而焊核剥离模式则在焊核外沿板厚方向失效;获得了不同断裂模式(界面断裂,部分界面断裂和焊核剥离断裂)下的临界熔核尺寸.为超高强度钢点焊拉剪接头断裂模式评价与预测提供了技术参考.

本文引用格式

肖凤琳,张延松 . 超高强度钢电阻点焊拉剪接头断裂模式的模拟分析[J]. 上海交通大学学报, 2018 , 52(3) : 312 -317 . DOI: 10.16183/j.cnki.jsjtu.2018.03.009

Abstract

In this paper, a finite element model of ultra-high strength steel spot-welded lap-shear joint is established by taking the 1.5mm stamped boron steel as example, the geometric dimension and material properties of the heat affected zone are defined, and the effect of the nugget size on the fracture modes of a spot-welded joint is analyzed. The results show that PPF (part interfacial fracture) occurs in the softening zone and fails inside the nugget along the thickness direction of the sheets; PF (pull-out fracture) occurs outside the nugget along the thickness direction of the sheets. The critical nugget sizes of different fracture modes (interfacial fracture, part interfacial fracture and pull-out fracture) are obtained. The study provides technical reference for the evaluation and prediction of the fracture modes of ultra-high strength steel spot-welded joints.

参考文献

[1]林建平, 胡琪, 王立影, 等. USIBOR1500超高强度淬火钢板点焊性能研究[J].中国工程机械学报, 2007, 5(3): 317-321. LIN Jianping, HU Qi, WANG Liying, et al. Spot welding property study of ultra high strength quenching steel plate USIBOR1500[J]. Chinese Journal of Construction Machinery, 2007, 5(3): 317-321. [2]LIU Y H, YU H P, XIAO W W, et al. Experiment-al research on tensile-shear behavior of spot-welded lap joints of ultra-high strength steel[J]. Applied Mechanics and Materials, 2012, 226-228: 1720-1724. [3]XU F X, SUN G Y, LI G Y, et al. Failure analysis for resistance spot welding in lap-shear specimens[J]. International Journal of Mechanical Sciences, 2014, 78(1): 154-166. [4]SOMMER S. Modeling of the fracture behavior of spot welds using advanced micro-mechanical damage models[J]. Materials Science and Engineering, 2010, 10(1): 1-10. [5]KIM L N. Ductile shear failure or plug failure of spot welds modelled by modified Gurson model[J]. Engineering Fracture Mechanics, 2010, 77(7): 1031-1047. [6]SHANG D G, BARKEY M E. Analysis of fatigue crack behaviour based on dynamic response simulations and experiments for tensile-shear spot-welded joints[J]. Fatigue & Fracture of Engineering Materials & Structures, 2006, 29(1): 23-30. [7]RAATH N D, HUGHES D J, NORMAN D, et al. A route to fracture prediction of spot welded boron steel in automotive applications[J]. The Minerals, Metals & Materials Society, 2013, 83(9): 111-120. [8]MARYA M, WANG K, HECTOR L G, et al. Tensile-shear forces and fracture modes in single and multiple weld specimens in dual-phase steels[J]. Journal of Manufacturing Science and Engineering, 2005, 128(1): 287-298. [9]ELLER T K, GREVE L, ANDRES M T, et al. Plasticity and fracture modeling of quench-hardenable boron steel with tailored properties[J]. Journal of Materials Processing Technology, 2014, 214(6): 1211-1227. [10]YU H P, WANG W W, LI X Y, et al. Experiments and numerical simulation on spot-welded structure of ultra-high strength steel[J]. Transactions of the China Welding Institution, 2013, 34(10): 9-12.
Options
文章导航

/