以DARPA (Defense Advanced Research Projects Agency) 公开的Suboff潜艇模型作为鱼雷体并以NACA (National Advisory Committee for Aeronautics) 翼型生成支柱构建了一艘斜支柱小水线面双体船.以此为基础,考虑黏性,通过求解RANS方程,系统地和针对性地研究了浸深分别对高速斜支柱小水线面双体船鱼雷体和整船阻力的影响,揭示了不同航速下各阻力成分与浸深之间的关系.通过研究发现:浸深对高速斜支柱小水线面双体船阻力影响显著,航速越高,浸深对整船阻力的影响越显著;虽然在近水面由于兴波的存在,鱼雷体阻力随浸深的减小而增大,但是整船阻力还是随着浸深的减小而减小.
A small waterplane area twin-hull (SWATH) ship with inclined struts and the DARPA (Defense Advanced Research Projects Agency) Suboff model as torpedoes and an NACA (National Advisory Committee for Aeronautics) airfoil as the strut cross section is developed. Based on this design, a systematic and targeted study based on CFD has been conducted to figure out how the torpedo submergence depth impacts the resistance of the torpedo and the entire ship of the SWATHmodel above. Viscidity was consi-dered. It is found that, through the study, the torpedo submergence depth has a significant impact on the hull resistance of a SWATH with inclined struts, and the impact increases with speed rising. Although the wave makes resistance of torpedoes near the free surface increase obviously with the torpedo submergence depth decreasing, the total resistance of the whole ship decrease obviously with the torpedo submergence depth decreasing.
[1]BRIZZOLARA S, CURTIN T, BOVIO M, et al. Concept design and hydrodynamic optimization of an innovative SWATH USV by CFD methods[J]. Ocean Dynamics, 2012, 62(2): 227-237.
[2]QIAN P, YI H, LI Y. Numerical and experimental studies on hydrodynamic performance of a small waterplane area twin hull (SWATH) vehicle with inclined struts[J]. Ocean Engineering, 2015, 96: 181-191.
[3]张楠, 沈泓萃, 姚惠之. 潜艇近海底与近水面绕流数值模拟研究[J]. 船舶力学, 2007, 11(4): 498-507.
ZHANG Nan, SHEN Hongcui, YAO Huizhi. Numerical simulation of flow around submarine operating close to the bottom or near surface[J]. Journal of Ship Mechanics, 2007, 11(4): 498-507.
[4]朱爱军, 应良镁, 郑宏, 等. 海底、海面对水下航行体阻力影响的模型试验研究[J]. 船舶力学, 2012, 16(4): 368-374.
ZHU Aijun, YING Liangmei, ZHENG Hong, et al. Resistance test method on underwater vessel operating close to the bottom or the surface[J]. Journal of Ship Mechanics, 2012, 16(4): 368-374.
[5]陶晖, 顾敏童. 小水线面双体船片体的兴波阻力研究[J]. 造船技术, 2006, 45(1): 10-13.
TAO Hui, GU Mintong. Study on wave-making resistance of SWATH hulls[J]. Marine Technology, 2006, 45(1): 10-13.
[6]邢瑶. 斜支柱小水线面双体船的兴波阻力研究[D].上海:上海交通大学船舶海洋与建筑工程学院, 2008.
[7]许辉, 邹早建. 小水线面双体船黏性流数值模拟[J]. 船舶工程, 2004, 26(2): 17-19.
XU Hui, ZOU Zaojian. Numerical simulation of viscous flow around a SWATH ship[J]. Ship Engineering, 2004, 26(2): 17-19.
[8]GROVES N C, HUANG T T, CHANG M S. Geometric characteristics of DARPA Suboff models (DTRC Model Nos. 5470 and 5471)[R]. Bethesda: David Taylor Research Center, 1989.
[9]张楠, 沈泓萃, 姚惠之. 潜艇阻力与流场的数值模拟与验证及艇型的数值优化研究[J]. 船舶力学, 2005, 9(1): 1-13.
ZHANG Nan, SHEN Hongcui, YAO Huizhi. Validation of numerical simulation on resistance and flow field of submarine and numerical optimization of submarine hull form[J]. Journal of Ship Mechanics, 2005, 9(1): 1-13.
[10]JONES W P, LAUNDER B E. The prediction of laminarization with a two-equation model of turbulence[J]. International Journal of Heat and Mass Transfer, 1972, 15(2): 301-314.
[11]MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[12]HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
[13]HUANG T T, LIU H L, GROVERS N C. Experiments of the DARPA SUBOFF program[R]. Bethesda: David Taylor Research Center, 1990.
[14]魏成柱, 毛立夫,李英辉,等. 单体半滑行穿浪船船型与静水航行性能[J]. 中国舰船研究, 2015, 10(5): 16-21.
WEI Chengzhu, MAO Lifu, LI Yinghui, et al. Analysis of the hull form and sailing characters in calm water of a semi-planing wave-piercing boat[J]. Chinese Journal of Ship Research, 2015, 10(5): 16-21.
[15]LIU H L, HUANG T T. Summary of DARPA SUBOFF experimental program data[R]. West Bethesda: Naval Surface Warfare Center Carderock Div Bethesda MD Hydromechanics Directorate, 1998.