通过对4个具有不同穿浪船首的单体穿浪船进行建模并对比分析模型在静水及波浪中的直航运动,研究了水线以上船首形式变化对单体穿浪船水动力性能的影响.研究主要基于数值模拟,通过求解URANS(Unsteady Reynolds Averaged Navier-Stokes)方程和使用多种动网格技术来预报船体阻力和运动.研究表明:具有瘦削船首的单体穿浪船在短波中的受力和运动对水线以上穿浪船首形式变化不敏感,在波浪中的阻力、运动姿态和加速度比滑行艇的要小;水线以上穿浪船首形式对单体穿浪船在静水中的阻力、姿态和兴波的影响要基于船体尺度进行讨论,大型单体穿浪船静水中的阻力、姿态和兴波对水线以上穿浪船首形式变化不敏感,而水线以上穿浪船首形式对小型高速穿浪艇静水中的阻力、姿态和兴波的影响显著.
Typical wave piercing bows were modeled to study the influence of bowshape on hydrodynamic performance of mono wave-piercing craft. Numerical methods were developed by solving URANS (Unsteady Reynolds Averaged Navier-Stokes) equations and adopting different dynamic mesh methods for this study. Simulations of hulls with different wave-piercing bows running in calm water and waves were conducted. Mono wave-piercing craft with slender wave-piercing bows are not sensitive to bow forms in short waves, and have smaller resistance, hull motions and acceleration than a planning boat. Resistance and wave making in calm water of a mono wave-piercing craft in large scale are not sensitive to bowshape, while bowshape has great influence on resistance, hull motions and wave making in calm water of a mono wave-piercing craft with small scale and high speed.
[1]VAKILABADI K A, KHEDMATI M R, SEIF M S. Experimental study on heave and pitch motion characteristics of a wave-piercing trimaran[J]. Transactions of FAMENA, 2014, 38(3): 13-26.
[2]CARRICA P M, SADAT-HOSSEINI H, STERN F. CFD analysis of broaching for a model surface combatant with explicit simulation of moving rudders and rotating propellers[J]. Computers & Fluids, 2012, 53(1): 117-132.
[3]WANG L, HUANG F, YANG C, et al. Hydrodynamic optimization of a wedge hull[C]∥Proceedings of the FAST2015. Washington DC, USA: FAST, 2015: 1-8.
[4]孙树政, 赵晓东, 李积德, 等. 低内倾干舷单体复合船型模型试验研究[J]. 船舶力学, 2014, 18(7): 809-814.
SUN Shuzheng, ZHAO Xiaodong, LI Jide, et al. Model test study on hybrid monohull with intilted low-freeboard[J]. Journal of Ship Mechanics, 2014, 18(7): 809-814.
[5]魏成柱, 李英辉, 易宏. 基于CAD与CFD的穿梭艇局部船型特征分析[J]. 船舶工程, 2014, 36(3): 28-32.
WEI Chengzhu, LI Yinghui, YI Hong. Analysis of shuttle vessel’ s local hull form characteristics based on CAD and CFD[J]. Ship Engineering, 2014, 36(3): 28-32.
[6]WEI C Z, LI Y H, YI H. CFD and EFD based stu-dies of hull wetness of fast mono-WPC[C]∥36th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2016). Busan, South Korea: DMAE, 2016: 1-9.
[7]LARSSON L, STERN F, VISONNEAU M. Nume-ricalship hydrodynamics: An assessment of the Gothenburg 2010 workshop[M]. Gothenburg, Sweden: Springer, 2014.
[8]王硕, 苏玉民, 庞永杰, 等. 高速滑行艇 CFD 精度研究[J]. 船舶力学, 2013, 17(10): 1107-1114.
WANG Shuo, SU Yuming, PANG Yongjie, et al. Study on the accuracy in the hydrodynamic prediction of high-speed planing crafts of CFD method[J]. Journal of Ship Mechanics, 2013, 17(10): 1107-1114.
[9]WANG S, SU Y, ZHANG X, et al. RANSE simulation of high-speed planning craft in regular waves[J]. Journal of Marine Science and Application, 2012, 11(4): 447-452.
[10]YOUSEFI R, SHAFAGHAT R, SHAKERI M. High-speed planing hull drag reduction using tunnels[J]. Ocean Engineering, 2014, 84(7): 54-60.
[11]魏成柱, 李英辉, 易宏. 楔形压浪体在内倾式船首中的应用研究[J]. 船舶工程, 2013, 35(1): 9-12.
WEI Chengzhu, LI Yinghui, YI Hong. Application research of anti-green-water wedge to intilted bow[J]. Ship Engineering, 2013, 35(1): 9-12.
[12]魏成柱. 穿梭艇性能特征与船型优化[D]. 上海: 上海交通大学船舶海洋与建筑工程学院, 2013.
[13]VEER A P. Experimental results of motions, hydrodynamic coefficients and wave loads on the 372 Catamaran mode[R]. Deift City, Holland: Deift University of Technology, 1998.
[14]TAUNTON D J, HUDSON D A, SHENOI R A. Characteristics of a series of high speed hard chine planing hulls-part 1: Performance in calm water[J]. International Journal of Small Craft Technology, 2010, 152: 55-75.