学报(中文)

50%SiCp/Al复合材料的电弧铣削与铣磨组合加工

展开
  • 1. 上海航天设备制造总厂, 上海 200245; 2. 上海交通大学 机械与动力工程学院, 上海 200240

网络出版日期: 2018-03-01

基金资助

上海市青年科技英才扬帆计划(15YF1405300),上海航天技术研究院航天先进技术联合研究中心项目(USCAST2015-19)

Combined Machining of 50%SiCp/Al Composites with Electrical-Arc-Milling and Milling-Grinding

Expand
  • 1. Shanghai Aerospace Equipment Manufacturing General Plant, Shanghai 200240, China; 2. School of Machanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2018-03-01

摘要

为了解决传统方法在高体积分数SiCp/Al复合材料加工中效率不高、易产生表面缺陷的问题,提出了一种电弧铣削与铣磨组合的高效精密加工方法.实验结果显示,采用电弧铣削进行50%SiCp/Al复合材料的粗加工,材料去除率可达6300mm3/min,再铸层厚度可控制在100μm以内,对后续精加工不会产生不良影响;采用铣磨进行50%SiCp/Al复合材料的精密加工,可避免产生崩边等表面缺陷,表面粗糙度(Ra)可达0.8μm.针对红外位标器支架的产品加工实验,验证了该组合加工方法的高效性与可靠性.

本文引用格式

刘晓1,陈吉朋2,顾琳2,陈风帆1,王炜1 . 50%SiCp/Al复合材料的电弧铣削与铣磨组合加工[J]. 上海交通大学学报, 2018 , 52(2) : 222 -227 . DOI: 10.16183/j.cnki.jsjtu.2018.02.015

Abstract

To solve the problems of SiCp/Al composites processing, such as low efficiency and limited surface quality, a processing method was proposed by combined electrical-arc-milling and milling-grinding. The experimental results show that the obtained material remove rate was up to 6300mm3/min and the thickness of recast layer was below 100μm by the electrical-arc-milling to the rough machining of 50%SiCp/Al composites (volume fraction). On the other hand, when the milling-grinding was applied to the finishing of 50%SiCp/Al composites, the surface defects such as edge breakage can be avoided, and the surface roughness (Ra) was 0.8μm. The validity of the combined manufacture method was proved with the machining tests for the bracket IR seeker, which was made of 50%SiCp/Al composites.

参考文献

[1]MUGUTHU J N, DONG G, IKUA B. Optimization of machining parameters influencing machinability of Al2124SiCp (45%wt) metal matrix composite[J]. Journal of Composite Materials, 2013, 49(2): 217-229. [2]SEO Y W, KIM D, RAMULU M. Electrical discharge machining of functionally graded 15—35 Vol% SiCp/Al composites[J]. Advanced Manufacturing Processes, 2006, 21(5): 479-487. [3]MESHCHERIAKOV G, NOSULENKO V, MESHCHERIAKOV N, et al. Physical and technological control of arc dimensional machining[J]. CIRP Annals-Manufacturing Technology, 1988, 37(1): 209-212. [4]ZHAO W, GU L, XU H, et al. A novel high efficiency electrical erosion process-blasting erosion arc machining[J]. Procedia Cirp, 2013, 6(6): 621-625. [5]GU L, CHEN J, XU H, et al. Blasting erosion arc machining of 20 vol.% SiC/Al metal matrix composites[J]. International Journal of Advanced Manufacturing Technology, 2016, 87(9/10/11/12): 1-10. [6]ZHANG M, ZHANG Q, DOU L, et al. Effects of flushing on electrical discharge machining and electro-arc machining[J]. Proceedings of the Institution of Mechanical Engineers. Part B: Journal of Engineering Manufacture, 2016, 230(2): 293-302. [7]TRIMMER A L, HAYASHI S R, WEI B. BlueArc machining—A high speed roughing for aerospace alloys[C]∥Aeromat 23 Conference and Exposition American Society for Metals. Charlotte: American Society for Metals, 2012. [8]TRIMMER A L, HAYASHI S, LAMPHERE M. Advancement in high speed electro-erosion processes for machining tough metals[C]∥International Symposium on Electromachining. Shanghai: Shanghai Jiao Tong University Press, 2010. [9]TRIMMER A L, LUO Y, WEI B, et al. Electroerosion machining systems and methods: US, CA 2768260 A1[P]. 2012. [10]LI J G, DU J G. Experimental study of machinability in mill-grinding of SiCp/Al composites[J]. Journal of Wuhan University of Technology, 2014, 29(6): 1104-1110. [11]ZHAO W, XU H, GU L, et al. Influence of polarity on the performance of blasting erosion arc machining[J]. CIRP Annals-Manufacturing Technology, 2015, 64(1): 213-216.
Options
文章导航

/