为研究外倾角对悬链式非充气车轮侧偏特性的影响,分析了悬链式非充气车轮的结构及承载机制,假定车轮所有弹性均集中在具有刷子变形特征的輮轮胎面,建立了悬链式非充气车轮外倾和侧偏特性刷子理论模型.利用轮胎动态特性试验台对悬链式非充气车轮外倾和侧偏特性进行了试验研究,并将试验数据和理论模型的理论值进行对比分析.结果表明:所建立的理论模型对车轮外倾和侧偏特性的表达具有良好的可靠性;当外倾角与侧偏角同号时,外倾角会使侧向力增大,回正力矩减小,而异号时则会减小侧向力,同时增大回正力矩.研究为悬链式非充气车轮结构的优化设计及复合工况下的理论建模提供了指导.
To investigate the influence of camber angle on the cornering characteristics of the catenary non-pneumatic wheel, the wheel structure and bearing mechanism were analyzed. The brush theory model under the combined conditions of camber and cornering was established based on the assumption that the elastic characteristics of catenary non-pneumatic wheel are all concentrated in the tread, which has brush deformation characteristics. The camber and cornering characteristics test was carried out with tire dynamic test rig, and the experimental results and the analytical results of the theory model were compared and discussed in detail. The results show that the established theoretical model can accurately express the camber and cornering characteristics of the catenary non-pneumatic wheel. Moreover, the existence of the camber angle will increase the lateral force and decrease the self-align moment when the camber and sideslip angle are both positive or negative; otherwise, the lateral force will be reduced and the self-align moment will be increased. This research provides a theoretical guidance for the structure optimization and the modeling of the catenary non-pneumatic wheel under the combined conditions.
[1]KINDT P, SAS P, DESMET W. Development and validation of a three-dimensional ring-based structural tyre model[J]. Journal of Sound and Vibration, 2009, 326(3/5): 852-869.
[2]佟金, 杨欣, 张伏, 等.零压续跑轮胎技术现状与发展[J]. 农业机械学报, 2007, 38(3): 182-187.
TONG Jin, YANG Xin, ZHANG Fu, et al. Deve-lopment of run-flat tire technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(3): 182-187.
[3]GASMI A, JOSEPH P F, RHYNE T B, et al. Development of a two-dimensional model of a compliant non-pneumatic tire[J]. International Journal of Solids and Structures, 2012, 49(13): 1723-1740.
[4]JU J, KIM D M, KIM K. Flexible cellular solid spokes of a non-pneumatic tire[J]. Composite Structures, 2012, 94(8): 2285-2295.
[5]臧利国, 赵又群, 李波, 等. 非充气机械弹性车轮静态径向刚度特性研究[J]. 兵工学报, 2015, 36(2): 355-362.
ZANG Liguo, ZHAO Youqun, LI Bo, et al. Static radial stiffness characteristics of non-pneumatic mechanical elastic wheel[J]. Acta Armamentarii, 2015, 36(2): 355-362.
[6]WANG Q, ZHAO Y Q, DU X B, et al. Equivalent stiffness and dynamic response of new mechanical elastic wheel[J]. Journal of Vibroengineering, 2016, 18(1): 431-445.
[7]臧利国, 赵又群, 李波, 等. 非充气机械弹性车轮接地特性试验研究[J]. 汽车工程, 2016, 38(3): 350-355.
ZANG Liguo, ZHAO Youqun, LI Bo, et al. An experimental study on the ground contact characteristics of non-pneumatic mechanical elastic wheel[J]. Automotive Engineering, 2016, 38(3): 350-355.
[8]FIALA E. Seitenkraefte am rollenden luftreifen[J].Verein Deutscher Ingenieure, 1954, 96(29): 973-979.
[9]PACEJKA H B, BAKKER E. The magic formula tyre model[J]. Vehicle System Dynamics, 1992, 21(Sup): 1-18.
[10]XU N, GUO K H, ZHANG X J, et al. An analytical tire model with flexible carcass for combined slips[J]. Mathematical Problems in Engineering, 2014(11): 1-9.
[11]郭孔辉, 杨杰. 大侧倾角下UniTire 稳态侧倾侧偏工况侧向力模型[J]. 机械工程学报, 2014, 50(8): 95-101.
GUO Konghui, YANG Jie. Steady-state UniTire la-teral force model under sideslip combined with large camber condition[J]. Journal of Mechanical Engineering, 2014, 50(8): 95-101.
[12]GUO K, LU D. UniTire: Unified tire model for vehicle dynamic simulation[J]. Vehicle System Dynamics, 2007, 45(Sup1): 79-99.
[13]GOEL V K, RAMJI K. Analytical predictions of steady state tyre characteristics[J]. International Journal of Vehicle Design, 2004, 34(3): 260-285.
[14]LIANG W, MEDANIC J, RUHL R. Analytical dynamic tire model[J]. Vehicle System Dynamics, 2008, 46(3): 197-227.
[15]KIM S, KONDO K, AKASAKA T. Contact pressure distribution of radial tire in motion with camber angle[J]. Tire science and Technology, 2000, 28(1): 2-32.
[16]DEUR J, ASGARI J, HROVAT D. A 3D brush-tyre dynamic tire friction model[J]. Vehicle System Dynamics, 2004, 42(3): 133-173.
[17]KABE K, MIYASHITA N. A new analytical tire model for cornering simulation. Part I: Cornering power and self-aligning torque power[J]. Tire Science and Technology, 2006, 34(2): 84-99.
[18]GUAN Y J, ZHAO G Q, CHENG G. FEA and test-ing studies on static camber performance of the radial tire[J]. Journal of Reinforced Plastics and Composites, 2007, 26(18): 1921-1936.
[19]LI H, SCHINDLER C. Three-dimensional finite element and analytical modelling of tyre-soil interaction[J]. Proceedings of the Institution of Mechanical Engineers. Part K: Journal of Multi-body Dynamics, 2012, 227(1): 42-60.