学报(中文)

区间q-Bézier曲线的降阶算法

展开
  • 1. 合肥工业大学 数学学院, 合肥 230009; 2. 拉文大学 数学系, 美国 拉文 91750

网络出版日期: 2018-01-01

基金资助

国家自然科学基金项目(11471093),安徽省教育厅自然科学重大研究项目(KJ2014ZD30),中央高校基本科研业务费专项经费(JZ2015HGXJ0175)

Algorithms for Degree Reduction of Interval q-Bézier Curves

Expand
  • 1. School of Mathematics, Hefei University of Technology, Hefei 230009, China; 2. Department of Mathematics, University of La Verne, La Verne 91750, America

Online published: 2018-01-01

摘要

基于一类广义Bernstein基函数定义了区间q-Bézier曲线,并研究了区间q-Bézier曲线的3种降阶逼近算法,即扰动法、基于Chebyshev多项式的最佳一致逼近法和约束最佳一致逼近法,得到3种降阶逼近方法的显式误差界,并通过实例分析了3种方法的优缺点.数值实例结果表明,与扰动法相比,最佳一致逼近法所得区间q-Bézier曲线的误差最小.

本文引用格式

刘植1,吕雁燕1,刘晓雁2,张莉1 . 区间q-Bézier曲线的降阶算法[J]. 上海交通大学学报, 2018 , 52(1) : 111 -119 . DOI: 10.16183/j.cnki.jsjtu.2018.01.017

Abstract

Interval q-Bézier curves are presented using a generalized Bernstein basis and the problem of degree reduction approximation of them is studied. We propose three different methods, namely, perturbation method, best uniform approximation method and constrained best uniform approximation method based on Chebyshev polynomials. The explicit representation of bounding error of each method is derived. The advantages and disadvantages of these methods are discussed by several numerical examples. These examples show that the best uniform approximation algorithm provides much tighter approximation interval curves than the perturbation method.

参考文献

[1]PHILLIPS G M. Bernstein polynomials based on the q-integers[J]. Annals of Numerical Mathematics, 1997, 4(1/2/3/4): 511-518. [2]ORUC H, PHILLIPS G M. q-Bernstein polynomials and Bézier curves[J]. Journal of Computational and Applied Mathematics, 2003, 151(1): 1-12. [3]GOLDMAN R, SIMEONOV P. Two essential properties of q-Bernstein-Bézier curves[J]. Applied Numerical Mathematics, 2015, 96: 82-93. [4]OSTROVSKA S, OZBAN A Y. On the q-Bernstein polynomials of rational functions with real poles[J]. Journal of Mathematical Analysis and Applications, 2014, 413(2): 547-556. [5]刘植, 吕雁燕, 刘晓雁, 等. 圆域q-Bézier曲线的降阶[J]. 计算机辅助设计与图形学学报, 2017, 29(5): 860-867. LIU Zhi, L Yanyan, LIU Xiaoyan, et al. Degree reduction of disk q-Bézier curves[J]. Journal of Computer-Aided Design and Computer Graphics, 2017, 29(5): 860-867. [6]CHEN F L, LOU W P. Degree reduction of interval Bézier curves[J]. Computer-Aided Design, 2000, 32(10): 571-582. [7]CHEN F L, YANG X F, YANG W. Degree reduction of interval B-spline curves[J]. Journal of Software, 2002, 13(4): 490-500. [8]檀结庆, 江平. 区间Ball曲线的边界及降阶[J]. 计算机辅助设计与图形学学报, 2006, 18(3): 378-384. TAN Jieqing, JIANG Ping. Boundary and degree reduction of interval Ball curves[J]. Journal of Computer-Aided Design and Computer Graphics, 2006, 18(3): 378-384. [9]檀结庆, 方中海. 区间Wang-Said型广义Ball曲线的降阶[J]. 计算机辅助设计与图形学学报, 2008, 20(11): 1483-1493. TAN Jieqing, FANG Zhonghai. Degree reduction of interval generalized Ball curves of Wang-Said type[J]. Journal of Computer-Aided Design and Computer Graphics, 2008, 20(11): 1483-1493. [10]GOSPODARCZYK P. Degree reduction of Bézier curves with restricted control points area[J]. Computer-Aided Design, 2015, 62: 143-151. [11]BHRAWY A H, DOHA E H, SAKER M A, et al. Modified Jacobi-Bernstein basis transformation and its application to multi-degree reduction of Bézier curves[J]. Journal of Computational and Applied Mathematics, 2016, 302: 369-384.
Options
文章导航

/