学报(中文)

基于柔顺机构的减振电极的植入损伤对比分析

展开
  • 上海交通大学 机械与动力工程学院, 上海 200240

网络出版日期: 2018-03-01

基金资助

国家自然科学基金项目(51675330)

A Comparative Study on Tissue Injury Caused by Implantation Based on Electrode with the Capability of Micro-Motion Attenuation

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2018-03-01

摘要

为了验证具有柔顺机构的减振神经微电极在相应条件下的植入过程中减少生物组织损伤的有效性,基于电极植入损伤评估系统,分别使用减振电极与参照电极在不同的植入深度(轴向位移1.5,3.0和4.5mm)与植入速度(50,100,500,1000,1500和2000μm/s)条件下进行植入损伤对比实验.该实验方法规避了生物活体实验的不确定性,且具有模拟实验的可控性.对比分析结果表明:当植入深度为1.5mm时,减振电极在减小电极植入损伤方面并没有明显优势;植入深度分别为3.0和4.5mm时减振电极最大组织应变均随着植入速度的增加而减小,其在减小组织应变及力学性能方面优势均较为明显.

本文引用格式

唐嘉琪,张文光,蔡丰隆,尹雪乐 . 基于柔顺机构的减振电极的植入损伤对比分析[J]. 上海交通大学学报, 2018 , 52(2) : 188 -193 . DOI: 10.16183/j.cnki.jsjtu.2018.02.010

Abstract

In order to attest the validity of neural electrode with the capability of micro-motion attenuation, comparative studies based on evaluation system for testing tissue injury were conducted. Different implantation parameters (depth: 1.5, 3, 4.5mm; insertion speed: 50, 100, 500, 1000, 1500, 2000μm/s) were set respectively for the experiment with the micro-motion attenuation electrode and the common electrode to study the affects of the two electrodes. This method is controlable, and can effectly avoid the uncertainty of vivo experiments. The conclusion was found that the modified electrode is not better than the reference electrode at the depth of 1.5mm. But it has obvious advantage on decreasing the tissue injury when the insertion depths are 3mm and 4.5mm.

参考文献

[1]OLUIGBO C O, REZAI A R. Addressing neurological disorders with neuromodulation[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(7): 1907-1917. [2]MINEV I R, MUSIENKO P, HIRSCH A, et al. Electronic dura mater for long-term multimodal neural interfaces[J]. Science, 2015, 347(6218): 159-163. [3]STREIT W, XUE Q S, PRASAD A, et al. Electrode failure: Tissue, electrical, and material responses[J]. IEEE Pulse, 2012, 3(1): 30-33. [4]FERNNDEZ E, GREGER B, HOUSE P A, et al. Acute human brain responses to intracortical microelectrode arrays: Challenges and future prospects[J].Frontiers in Neuroengineering, 2014, 7: 24. [5]ZHU R, HUANG G L, YOON H, et al. Biomechanical strain analysis at the interface of brain and nanowire electrodes on a neural probe[J]. Chemischer Informationsdienst, 2011, 2(29): 31001-31006. [6]PAULO C, PRATAS J. A response surface model predicting the in vivo insertion behavior of micro-machined neural implants[J]. Journal of Neural Engineering, 2011, 9(1): 016005. [7]BJORNSSON C S, OH S J, AL-KOFAHI Y A, et al. Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion[J]. Journal of Neural Engineering, 2006, 3(3): 196-207. [8]KONTORINIS G, LENARZ T, STVER T, et al. Impact of the insertion speed of cochlear implant electrodes on the insertion forces[J]. Otology & Neurotology, 2011, 32(4): 565-570. [9]ZHANG W G, MA Y K, LI Z W. Experimental evaluation of neural probe’s insertion induced injury based on digital image correlation method[J]. Medical Physics, 2016, 43(1): 505-512. [10]SEYMOUR J P, KIPKE D R. Neural probe design for reduced tissue encapsulation in CNS[J]. Biomaterials, 2007, 28(25): 3594-3607. [11]李正伟, 马亚坤, 张文光. 基于柔顺机构的减振神经电极的设计与评估[J]. 上海交通大学学报, 2015, 49(12): 1888-1892. LI Zhengwei, MA Yakun, ZHANG Wenguang. Physical design concepts and biomechanical evaluations of a novel neural electrode abutment with micromotion-attenuation capability based on compliant mechanisms [J]. Journal of Shanghai Jiao Tong University, 2015, 49(12): 1888-1892. [12]PAN B, LU Z X, XIE H M. Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation[J]. Optics and Lasers in Engineering, 2010, 48(4): 469-477. [13]WELKENHUYSEN M, ANDREI A, AMEYE L, et al. Effect of insertion speed on tissue response and insertion mechanics of a chronically implanted silicon-based neural probe[J]. IEEE Transactions on Biome-dical Engineering, 2011, 58(11): 3250-3259. [14]PINTO J M T, TOUCHARD F, CASTAGNET S, et al. DIC strain measurements at the micro-scale in a semi-crystalline polymer[J]. Experimental Mechanics, 2013, 53(8): 1311-1321. [15]JR S S, KHALIFA Y M, BUCKLEY M R. The location-and depth-dependent mechanical response of the human cornea under shear loading[J]. Investigative Ophthalmology & Visual Science, 2014, 55(12): 7919-7924.
Options
文章导航

/