为了实现深水环境下水下灵巧手抓取目标的定位及触觉力感知,设计了阵列式触觉力测量传感器.以硅杯作为力敏感核心,利用胶囊式差压状结构实现了水的静态压力矢量叠加下的触觉力测量,并消除了水的静态压力对触觉力测量的影响.利用弹性力学与板壳理论分析了方形硅杯底部变形与应力的解析解,并与有限元法的分析结果加以对比.结果表明,所设计的灵巧手触觉力测量传感器具有样本抓取的触觉感知及位置感知,其胶囊式差压状结构使得触觉力测量传感器能够消除水的静态压力的影响,硅杯式测量结构具有灵敏度高、误差小、输出应力大的特点.
In order to achieve the position determination and force tactile perception in underwater dexterous hand grasping target under deep water environment, an array of tactile force measurement sensor is designed. The silicon cup is used as the force sensitive core, the tactile force measurement of the static pressure vector superposition of water is realized by the capsule differential pressure structure, and the influence of the static pressure of water on the tactile force measurement is eliminated. The analytical solution for the deformation and stress of silicon cup square bottom is analyzed by the elastic mechanics and shell theory. The results show that the tactile force sensor of underwater dexterous hand achieves the tactile perception and position determination of the target gripping. The capsule differential pressure structure makes the tactile force sensor eliminate the effect of the static pressure. The silicon cup measurement structure has the advantages of high sensitivity, small error, and high output characteristics of stress.
[1]MUSCOLO G G, CANNATA G. A novel tactile sensor for underwater applications: Limits and perspectives[EB/OL].[2016-07-01]. http:∥ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7271717.
[2]PALLI G, MORIELLO L, MELCHIORRI C. On the bandwidth of 6-axis force/torque sensors for underwater applications[EB/OL].[2016-07-01]. http:∥ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7271380.
[3]LIU A Q, ZHAO J W, LI L, et al. Micro-force measuring apparatus for robotic fish: Design, implementation and application[EB/OL].[2016-07-01]. http:∥ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7162808.
[4]BEMFICA J R, MELCHIORRI C, MORIELLO L, et al. A three-fingered cable-driven gripper for underwater applications[C]∥International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE, 2014: 2469-2474.
[5]PALLI G, MORIELLO L, SCARCIA U, et al. An intrinsic tactile sensor for underwater robotics[C]∥Proceedings of the 19th World Congress. South Africa: IFAC, 2014, 3364-3369.
[6]XU D Z, YANG M, ZHANG Q, et al. Mechanical structure of intelligent underwater dexterous hand[C]∥International Conference on Information and Automation (ICIA). Harbin, China: IEEE, 2011: 782-785.
[7]刘焕进, 刘正士, 王勇, 等. 波纹管用于水下仪器设备压力平衡的力学性能分析[J]. 中国机械工程, 2012, 23(6) : 712-716.
LIU Huanjin, LIU Zhengshi, WANG Yong, et al. Analysis of mechanical property of corrugated bellow used for pressure balance for underwater equipment[J]. China Mechanical Engineering, 2012, 23(6): 712-716.
[8]黄豪彩, 杨灿军, 杨群慧, 等. 基于压力自适应平衡的深海气密采水系统[J]. 机械工程学报, 2010, 46(12): 148-154.
HUANG Haocai, YANG Canjun, YANG Qunhui, et al. Study of gas-tight deep-sea water sampling system based on pressure self-adaptive equalization[J]. Journal of Mechanical Engineering, 2010, 46(12): 148-154.
[9]孟庆鑫, 王华, 王立权, 等. 一种水下灵巧手指端力传感器的研究[J]. 中国机械工程, 2006, 17(11): 1132-1135.
MENG Qingxin, WANG Hua, WANG Liquan, et al. Development of fingertip force sensor for a dexterous underwater hand[J]. China Mechanical Engineering, 2006, 17(11): 1132-1135.
[10]赵长福. 一种用于水下机器人的接触觉传感器[J]. 信息与控制, 1985, 14(2): 44-47.
[11]王勇, 刘正士, 陈恩伟, 等. 软囊式水下力传感器的力学特性与设计原则[J]. 机械工程学报, 2009, 45(10): 15-21.
WANG Yong, LIU Zhengshi, CHEN Enwei, et al. Mechanical characteristic and design principle of underwater force sensor based on pressure balance of bladder[J]. Journal of Mechanical Engineering, 2009, 45(10): 15-21.
[12]TIMOSHENKO S P, WOINOWSKY-KRIEGER S. Theory of plates and shells[M]. New York, USA: McGraw-hill, 1959.
[13]胡国清, 龚小山, 周永宏, 等. 硅压力传感器基座受力变形时的输出性能[J]. 华南理工大学学报(自然科学版), 2015, 43(3): 1-8.
HU Guoqing, GONG Xiaoshan, ZHOU Yonghong, et al. Output performance of silicon pressure sensor influenced by deformation of sensor substrate[J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(3): 1-8.
[14]LOU L, ZHANG S S, PARK W T, et al. Optimization of NEMS pressure sensors with a multilayered diaphragm using silicon nanowires as piezoresistive sensing elements[J]. Journal of Micromechanics & Microengineering, 2012, 22(5): 1-15.
[15]KUMAR S S, PANT B D. Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: A focused review[J]. Microsystem Technologies, 2014, 20(7): 1213-1247.
[16]赵立波, 赵玉龙, 李建波, 等. 倒杯式耐高温高频响压阻式压力传感器[J]. 西安交通大学学报, 2010, 44(7): 50-54.
ZHAO Libo, ZHAO Yulong, LI Jianbo, et al. Inverted-cup high-temperature and high-frequency piezoresistive pressure sensor[J]. Journal of Xi’an Jiaotong University, 2010, 44(7): 50-54.
[17]CHEONG J H, NG S S Y, LIU X, et al. An inductively powered implantable blood flow sensor microsystem for vascular grafts[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(9): 2466-2475.