学报(中文)

腕部康复机器人助动训练的力反馈控制

展开
  • 上海交通大学 a. 生物医学工程学院; b. 材料科学与工程学院, 上海 200030

网络出版日期: 2018-01-01

基金资助

国家高技术研究发展计划(863)项目(2015AA043203),国家自然科学基金项目(61672341),国家自然科学基金重大项目(61190124, 61190120),上海市科学技术委员会项目(17441903800,14441900800, 15DZ1942103, 14DZ1941103)

Force Feedback Control for Assistive Mode Training of the Wrist Rehabilitation Robot

Expand
  • a. School of Biomedical Engineering; b. School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China

Online published: 2018-01-01

摘要

研制了一种3自由度腕部康复机器人并设计了具有力反馈功能的助动训练控制系统.采用力传感器及转矩传感器检测人腕部施加的力或力矩,根据作用力确定电机需要提供的助动力,以使患者腕部保持可承受范围内的压力,充分发挥患者已恢复的运动能力并实现康复机器人助动训练.电机控制系统中的电流环和速度环采用比例-积分调节器,位置环采用滑模变结构控制,具有控制精度高、稳定性强的特点.与采用脑电信号或肌电信号作为反馈控制的方式相比,采用力反馈控制的可操作性更强、精度更高且稳定性更强.同时,通过模拟实验验证了所提出的助动训练控制系统的有效性.

本文引用格式

王依晴a,谢叻a,b,洪武洲b . 腕部康复机器人助动训练的力反馈控制[J]. 上海交通大学学报, 2018 , 52(1) : 70 -75 . DOI: 10.16183/j.cnki.jsjtu.2018.01.011

Abstract

A three degrees of freedom (DOFs) wrist rehabilitation robot and the assistive control system with the force feedback function are designed. The assistive force provided by motors is determined according to the force/torque detected from the patient. The system ensures the patient can keep the same force/torque in assistive training. Compared with the electro-encephalogram (EEG) or surface electromyography (sEMG), the force feedback possesses many advantages such as high operability, accuracy, stability and low cost. Three closed loops with current, velocity and current system are applied in the control system. Proportional-integral (PI) regulator is applied in both current and velocity loops, and sliding variant structure regulator is adopted in the position loop, which effectively improves the accuracy and robustness of the system. System simulation has proved the validity of this control system.

参考文献

[1]NAGAI K, GOTO T, SHIMIZU T, et al. Feasibility study on EEG driven robotic system to realize efficient stroke rehabilitation[C]∥IEEE International Conference on Rehabilitation Robotics. Singapore: IEEE, 2015. [2]KHOKHAR Z O, XIAO Z G, SHERIDAN C, et al. A novel wrist rehabilitation/assistive device[C]∥3th International Conference: Multitopic Conference, 2009. Pakistan: IEEE, 2010: 1-6. [3]SONG Y, DU Y, WU X, et al. A synchronous and multi-domain feature extraction method of EEG and sEMG in power-assist rehabilitation robot[C]∥IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014: 4940-4945. [4]黄明, 黄心汉, 温月, 等. 便携式二自由度腕关节康复机器人设计[J]. 华中科技大学学报(自然科学版), 2013, 41(S1): 329-331. HUANG Ming, HUANG Xinhan, WEN Yue, et al. Design for portable 2-DOF wrist joints rehabilitation robot[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(S1): 329-331. [5]罗东峰. 桌面式上肢康复机器人控制研究[D]. 西安: 西安光学精密机械研究所, 2012. [6]张瑞雪. 三自由度主动式上肢康复机器人结构设计与开发[D]. 大连: 大连海事大学物流工程学院, 2015. [7]吕超. 上肢偏瘫康复机器人研究[D]. 上海: 上海交通大学材料科学与工程学院, 2011. [8]PERRY J C, ROSEN J. Design of a 7 degree-of-freedom upper-limb powered exoskeleton[C]∥Conference on Biomedical Robotics and Biomechatronics. Pisa, Italy: IEEE, 2006: 805-810. [9]GUO J, WU G, GUO S. Fuzzy PID algorithm-based motion control for the spherical amphibious robot[C]∥International Conference on Mechatronics and Automation (ICMA). Beijing: IEEE, 2015: 1583-1588. [10]刘霜. 混合式步进电机的神经网络控制方法研究[D]. 杭州:浙江大学电气工程学院, 2013.
Options
文章导航

/