学报(中文)

航空发动机转子装配同心度的偏差传递模型与优化

展开
  • 上海交通大学 机械系统与振动国家重点实验室; 上海市复杂薄板结构数字化制造重点实验室, 上海 200240

网络出版日期: 2018-01-01

基金资助

国家自然科学基金项目(51121063,51175340),“十二五”国家科技支撑计划项目(2012BAF06B03)

Deviation Propagation Model and Optimization of Concentricity for Aero-Engine Rotor Assembly

Expand
  • State Key Laboratory of Mechanical System and Vibration; Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2018-01-01

摘要

利用稳健特征值法(REM),通过一系列实验建立了平面参数与航空发动机高压压气机(HPC)转子零/组件同心度之间的偏差传递模型;通过对比各级零件偏心距以及止口端面圆跳动量的计算值与实测值,验证了所建模型的可靠性,并对其贡献率进行分析.为了有效提高HPC转子零/组件同心度,采用遗传算法(GA)确定各级零件的最佳安装角.结果表明,所提出的REM-GA方法适用于连续组合堆栈过程,可使各级零件的同心度提高50%以上,所获零件1、零件2和零件3的最佳安装角分别为6.225,3.422,5.983rad.

本文引用格式

丁司懿,金隼,李志敏,魏桢琦,杨夫勇 . 航空发动机转子装配同心度的偏差传递模型与优化[J]. 上海交通大学学报, 2018 , 52(1) : 54 -62 . DOI: 10.16183/j.cnki.jsjtu.2018.01.009

Abstract

Using robust eigenvalue method (REM), deviation propagation model was built to describe the relationship between the plane parameters and the concentricity of high pressure compressor (HPC) rotors in aero-engine assembly through experiments. The calculated values and measured values of parts eccentricity and circle run-out of mounting face were compared and the results verified the reliability of the model. In addition, contribution analysis was realized. In order to effectively improve the concentricity of HPC rotors, genetic algorithm (GA) was adopted to determine the optimal installation angles for each part. The results showed that the proposed REM-GA method was suitable for continuous process of stacked assembly and could improve the concentricity of each part by over 50 percent, and the obtained optimal installation angles were 6.225, 3.422 and 5.983 rad respectively.

参考文献

[1]MCKENZIE A B. The design and performance of axial compressor stages in fully developed flow[J]. Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power and Energy, 2000, 214(6): 575-583. [2]JAYAWEERA N, WEBB P, JOHNSON C. Mea-surement assisted robotic assembly of fabricated aero-engine components[J]. Assembly Automation, 2010, 30(1): 56-65. [3]THIMM G, BRITTON G A, CHEONG F S. Controlling tolerance stacks for efficient manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2001, 18(1): 44-48. [4]谭久彬, 孙传智, 王雷, 等. 基于空间向量投影的航空发动机转子装配方法与装置: CN103790644A[P]. 2014-05-14[2017-02-10]. [5]郭恩明. 航空先进制造技术发展趋势[J]. 航空制造技术, 2007(S1): 1-5. GUO Enming. Development trend of advanced aeronautical manufacturing[J]. Aeronautical Manufacturing Technology, 2007(S1): 1-5. [6]胡家喜, 周来水, 卫炜, 等. 面向航空发动机工装快速设计系统的信息模型研究[J]. 制造业自动化, 2010, 32(12): 26-29. HU Jiaxi, ZHOU Laishui, WEI Wei, et al. Research on information model of tooling rapid design for aircraft engines[J]. Manufacturing Automation, 2010, 32(12): 26-29. [7]李伟楠, 朱宁, 石宏, 等. 航空发动机盘类转子柔性装配工装构型研究[J]. 沈阳航空航天大学学报, 2013, 30(3): 6-9. LI Weinan, ZHU Ning, SHI Hong, et al. Study on the configuration of flexible assembly tooling for aero-engine discoid rotors[J]. Journal of Shenyang Aerospace University, 2013, 30(3): 6-9. [8]张逸飞. 激光跟踪仪快速跟踪测量关键技术研究[D]. 哈尔滨: 哈尔滨工业大学电气工程及自动化学院, 2015. [9]孟书广. 航空发动机复杂零部件的新型测量技术[J]. 航空制造技术, 2014, 4(13): 32-35. MENG Shuguang. New metrology technique for complex components of aero-engine[J]. Aeronautical Manufacturing Technology, 2014, 4(13): 32-35. [10]徐延锋. 航空发动机装配数字化关键技术研究与实现[D]. 西安: 西北工业大学机电工程学院, 2006. [11]王成恩, 于宏, 张闻雷, 等. 面向对象的航空发动机装配模型[J]. 计算机集成制造系统, 2010, 16(5): 942-948. WANG Chengen, YU Hong, ZHANG Wenlei, et al. Object-oriented aero-engine assembly models[J]. Computer Integrated Manufacturing Systems, 2010, 16(5): 942-948. [12]陈雪峰, 张小丽, 程礼, 等. 一种航空发动机转子装配性能检测方法: CN101799354A [P]. 2010-08-11 [2017-02-10]. [13]张子阳, 谢寿生, 彭靖波, 等. 基于非线性阻尼的航空发动机高压转子拉杆结构装配检测方法[J]. 航空学报, 2012, 33(3): 470-478. ZHANG Ziyang, XIE Shousheng, PENG Jingbo, et al. Assembly variation detection for rod fastening rotor of high pressure spool in aero-engine based on nonlinear damping identification[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 470-478. [14]曹茂国. 多级盘结构转子的工艺装配优化设计方法[J]. 航空发动机, 1994 (3): 48-52. [15]MCMILLAN A. System and method for improving the damage tolerance of a rotor assembly: EP2525049[P]. Great Britain, 2012-11-21 [2017-02-10]. [16]官云兰, 程效军, 施贵刚. 一种稳健的点云数据平面拟合方法[J]. 同济大学学报(自然科学版), 2008, 36(7): 981-984. GUAN Yunlan, CHENG Xiaojun, SHI Guigang. A robust method for fitting a plane to point clouds[J]. Journal of Tongji University (Natural Science), 2008, 36(7): 981-984. [17]WANG C H, TANAHASHI H, HIRAYU H, et al. Comparison of local plane fitting methods for range data[C]∥Computer Vision and Pattern Recognition. Kauai, USA: IEEE, 2001: 1663-1669. [18]SHI Y, XU P, PENG J. An overview of adjustment methods for mixed additive and multiplicative random error models[M].Berlin, Germany: Springer, 2015: 1-8. [19]孙如祥. 粒子群与遗传算法的混合研究[D]. 南宁: 广西大学计算机与电子信息学院, 2014. [20]马菊侠, 李光明. 矩阵的初等变换法求特征值及特征向量[J]. 咸阳师范学院学报, 2003, 18(2): 62-63. MA Juxia, LI Guangming. Eigenvlue of a matrix and eigenvector of matrix from elementary operation on atrix[J]. Journal of Xianyang Normal University, 2003, 18(2): 62-63. [21]GOLDBERG D E, HOLLAND J H. Genetic algorithms and machine learning[J]. Machine Learning, 1988, 3(2): 95-99. [22]席裕庚, 柴天佑, 恽为民. 遗传算法综述[J]. 控制理论与应用, 1996, 13(6): 697-708. XI Yugeng, CHAI Tianyou, YUN Weimin. Survey on genetic algorithm[J]. Control Theory and Applications, 1996, 13(6): 697-708.
Options
文章导航

/