学报(中文)

基于视觉和毫米波雷达的车道级定位方法

展开
  • 上海交通大学 a. 自动化系; b. 上海市北斗导航与位置服务重点实验室; c. 机器人研究所, 上海 200240

网络出版日期: 2018-01-01

基金资助

国家自然科学基金项目(91420101)

A Lane-Level Positioning Method Based on Vision and Millimeter Wave Radar

Expand
  • a. Department of Automation; b. Shanghai Key Laboratory of Navigation and Location Services; c. Research Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2018-01-01

摘要

提出了一种基于视觉和毫米波雷达的车道级定位方法.利用机器视觉方法,通过摄像头检测车道线,并用圆曲线模型进行拟合;采用毫米波雷达检测道路两旁的静止护栏边沿,以获取道路的边界信息,采用低精度全球定位系统(GPS)获取当前道路信息,并对比车道线与道路边沿的相对位置关系,从而进行车道级定位.结果表明,针对中、高速城市道路及高速公路场景,所提出的车道级定位方法的定位效果较好.

本文引用格式

赵翔a,b,杨明a,b,王春香c,王冰a,b . 基于视觉和毫米波雷达的车道级定位方法[J]. 上海交通大学学报, 2018 , 52(1) : 33 -38 . DOI: 10.16183/j.cnki.jsjtu.2018.01.006

Abstract

A lane-level positioning method based on vision and millimeter wave radar is proposed. A camera is used for lane recognition with circular curve model and a millimeter wave radar is used for road curb re-cognition by detecting the stationary railways alongside. Lane-level positioning is then calculated by comparing the relative distance of lane and curb with the road prior information obtained from a low precision global position system (GPS). The results show that the lane-level positioning method proposed in this paper can achieve good positioning accuracy in city and highway scenes.

参考文献

[1]HILLEL A B, LERNER R, LEVI D, et al. Recent progress in road and lane detection: A survey[J]. Machine Vision and Applications, 2014, 25(3): 727-745. [2]WANG H Y, ZHANG X X, LI X L, et al. GPS/DR information fusion for AGV navigation[C]∥World Automation Congress. Puerto Vallarta, Mexico: IEEE, 2012: 1-4. [3]ALAM N, DEMPSTER A G. Cooperative position-ing for vehicular networks: Facts and future[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4): 1708-1717. [4]YONEDA K, YANG C, MITA S, et al. Urban road localization by using multiple layer map matching and line segment matching[C]∥Intelligent Vehicles Symposium (IV). Seoul, South Korea: IEEE, 2015: 525-530. [5]MECHAT N, SAADIA N, M’SIRDI N K, et al. Lane detection and tracking by monocular vision system in road vehicle[C]∥5th International Congress on International Congress on Image and Signal Processing. Congqing: IEEE, 2013: 1276-1282. [6]MCDONALD J B, FRANZ J, SHORTEN R. Application of the hough transform to lane detection in motorway driving scenarios[EB/OL]. [2016-10-01]. http:∥citeseerx.ist.psu.edu/viewdoc/summary?doi= 10.1.1.16.402. [7]白聪敏. 区域交通环境下的智能车全自主导航方法研究[D]. 上海交通大学机械与动力工程学院, 2012. [8]BERTOZZI M, BROGGI A. GOLD: A parallel real-time stereo vision system for generic obstacle and lane detection[J]. IEEE Transactions on Image Processing, 1998, 7(1): 62-81. [9]曹毓, 冯莹, 雷兵, 等. 逆透视映射公式的误差分析及准确度验证[J]. 光子学报, 2011, 40(12): 1833-1838. CAO Yu, FENG Ying, LEI Bing, et al. Eror analysis and precision validation of inverse perspective mapping formulae[J]. Acta Photonica Sinica, 2011, 40(12): 1833-1838. [10]JANDA F, PANGERL S, LANG E, et al. Road boundary detection for run-off road prevention based on the fusion of video and radar[C]∥Intelligent Vehicles Symposium (IV). Gold Coast, Australia: IEEE, 2013: 1173-1178.
Options
文章导航

/