学报(中文)

基于重力约束正态分布变换的室内3维地图重建方法

展开
  • 上海交通大学 a. 自动化系; b. 上海市北斗导航与位置服务重点实验室; c. 机器人研究所,上海200240

网络出版日期: 2018-01-01

基金资助

国家自然科学基金重大研究计划项目(91420101),国家磁约束核聚变能研究专项(2012GB102002)资助

3D Map Reconstruction in Indoor Environment Based on Normal Distribution Transformation Under Gravity Constraint

Expand
  • a. Department of Automation; b. Shanghai Key Laboratory of Navigation and Location Services; c. Research Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2018-01-01

摘要

提出一种基于改进正态分布变换的室内3维地图离线重建方法.通过加入重力方向约束来矫正地图形变,采用循环梯度配准方法提高配准成功率,并结合图优化的后端优化算法对所建地图进行优化.同时,采用摆动单线激光获取室内点云原始数据并进行实验,以验证所提方法的正确性.结果表明,利用该地图重建方法能够建立高精度的室内3维地图.

本文引用格式

戚明旭a,b,杨明a,b,王春香c,王冰a,b . 基于重力约束正态分布变换的室内3维地图重建方法[J]. 上海交通大学学报, 2018 , 52(1) : 26 -32 . DOI: DOI: 10.16183/j.cnki.jsjtu.2018.01.005

Abstract

A method for offline reconstruction of indoor 3D map is proposed based on an improved normal distribution transform (NDT) algorithm. First, a constraint in the gravity direction is incorporated into a 3D NDT, so that map deformation in extra dimensions is rectified. Then a cyclic gradient matching scheme is proposed to deal with the matching error resulted from scarce overlap between consecutive frames. Finally, a graph optimization is adopted in the back-end map construction. By using a swinging laser, experiments validate its performance and high accuracy.

参考文献

[1]MADDERN W, PASCOE G, NEWMAN P. Leveraging experience for large-scale LIDAR localisation in changing cities[C]∥IEEE International Conference on Robotics and Automation (ICRA). Washington, USA: IEEE, 2015: 1684-1691. [2]YONEDA K, TEHRANI H, OGAWA T, et al. Lidar scan feature for localization with highly precise 3-D map[C]∥IEEE Intelligent Vehicles Symposium Proceedings. Dearborn, USA: IEEE, 2014: 1345-1350. [3]肖已达, 王冰, 杨明, 等. 基于激光雷达的道路可通行区域检测[J]. 机电一体化, 2013, 19(2): 62-66. XIAO Yida, WANG Bing, YANG Ming, et al. The detection of road traffic zone based on laser radar[J]. Mechatronics, 2013, 19 (2): 62-66. [4]BUONOCORE L, SANTOS S R B D, NETO A A, et al. FastSLAM filter implementation for indoor autonomous robot[C]∥IEEE Intelligent Vehicles Symposium (IV). Gothenburg, Sweden: IEEE, 2016: 484-489. [5]REDONDO E L, MARTINEZ-MARIN T. A compact representation of the environment and its frontiers for autonomous vehicle navigation[C]∥IEEE Intelligent Vehicles Symposium (IV). Gothenburg, Sweden: IEEE, 2016: 851-857. [6]WULF O, WAGNER B. Fast 3D scanning methods for laser measurement systems[C]∥International Conference on Control Systems & Computer Science, 2003: 1-6. [7]YOSHIDA T, IRIE K, KOYANAGI E, et al. 3D laser scanner with gazing ability[C]∥IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011, 47(10): 3098-3103. [8]谷晓杰,卜春光,陈成,等. 三维激光测距系统设计与标定方法研究[J]. 沈阳理工大学学报, 2014, 33(5): 10-14. GU Xiaojie, BU Chunguang, CHEN Cheng, et al. Design, implementation and calibration of 3-D LIDAR scanning system[J]. Journal of Shenyang Ligong University, 2014, 33(5): 10-14. [9]ROHDE J, JATZKOWSKI I, MIELENZ H, et al. Vehicle pose estimation in cluttered urban environments using multilayer adaptive Monte Carlo localization[C]∥International Conference on Information Fusion. Heidelberg, Germany: IEEE, 2016. [10]POMERLEAU F, COLAS F, SIEGWART R, et al. Comparing ICP variants on real-world data sets[J]. Autonomous Robots, 2013, 34(3):133-148. [11]MAGNUSSON M, LILIENTHAL J A, DUCKETT T. Scan registration for autonomous mining vehicles using 3D-NDT[J]. Journal of Field Robotics, 2007, 24(10):803-827. [12]MAGNUSSON M, NCHTER A, LRKEN C, et al. Evaluation of 3D registration reliability and speed—A comparison of ICP and NDT[C]∥IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009: 3907-3912. [13]DRYANOVSKI I, VALENTI R G, XIAO J Z. Fast visual odometry and mapping from RGB-D data[C]∥IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013: 2305-2310. [14]KMMERLE R, GRISETTI G, STRASDAT H, et al. g2o: A general framework for graph optimization[C]∥IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011: 3607-3613.
Options
文章导航

/