针对复杂洋流干扰环境下水下多约束追踪问题,提出一种滚动时域非线性微分对策控制策略.基于智能体自导探测信息,建立水下追踪相对运动模型与追踪过程约束.通过分析追踪特性,确立以相对运动信息为变量的微分对策模型,结合零效控制和滚动预测算法的实施,设计出一种考虑过程约束和干扰的具有终端约束的水下追踪制导律.对不同期望终端交会角进行追踪的仿真结果表明,该制导策略能有效对抗干扰、实时调整约束,具有良好的时效性和较强的鲁棒性.
The problem of underwater tracking with multiple constraints in the complex ocean environment is formulated as a nonlinear differential games based on receding horizon control. The tracking relative motion model of underwater tracking is established using the agent homing detection information, on which the process constraints are developed. Using the relative motion information as state variable, the differential games model is obtained by analyzing the tracking characteristics. The nonlinear differential games tracking guidance law based impact angle constrain is derived from the underwater multiple constraints tracking systems with additive disturbance by the implementation of zero efficiency control and rolling prediction algorithm. The simulation results show that the guidance law has high time efficiency and strong robustness, which can resist the interference and adjust the constraints in real time.
[1]SARKAR M, NANDY S, VADAI S R K, et al. Modeling and simulation of a robust energy efficient AUV controller[J]. Mathematics and Computers in Ssimulation, 2016, 121: 34-47.
[2]BARDHAN R, GHOSE D. Nonlinear differential games-based impact-angle-constrained guidance law [J]. Journal of Guidance Control and Dynamics, 2015, 38: 1-19.
[3]SUN Jingliang, LIU Chunsheng, YE qing.Robust differential game guidance laws design for uncertain interceptor-target engagement via adaptive dynamic programming[J]. Internation Journal of Control, 2017, 90(5): 1-41.
[4]DESOUKY S F, SCHWARTZ H M. Self-learning fuzzy logic controllers for pursuit-evasion differential games[J]. Robotics and Autonomoussystems, 2011, 59(1): 22-33.
[5]方洋旺, 伍友利, 王洪强, 等. 导弹先进制导与控制理论[M].北京: 国防工业出版社, 2015.
[6]高剑, 刘昌鑫. 基于应答器位置测量的水下AUV非线性模型预测对接控制[J].西北工业大学报, 2015, 33(5): 861-866.
GAO Jian, LIU Changxin. Nonlinear model predictive docking control for an AUV with USBL position measurements[J]. Journal of Northwestern Polytechnical University, 2015, 33(5): 861-866.
[7]张园, 徐琦, 孙明玮, 等. 基于快速全线性预测控制的混沌系统控制与同步[J].物理学报, 2015, 64(1): 55-61.
ZHANG Yuan, XU Qi, SUN Mingwei, et al.Control and synchronization in chaotic systems based on fast linear predictive control[J]. Acta Physica Sinica, 2015, 64 (1): 55-61.
[8]ELSISI M, SOLIMAN M, ABOELEA M A S, et al. Bat inspired algorithm based optimal design of model predictive load frequency control[J]. International Journal of Electrical Power and Energy Systems, 2016, 83: 426-433.
[9]席裕庚.预测控制[M].北京: 国防工业出版社, 2013.
[10]周狄.寻的导弹新型导引规律[M].北京: 国防工业出版社, 2002.
[11]LI Huiping, YAN Weisheng, SHI Yang. Continuous-time model predictive control of unded-actuated spacecraft with bounded control torques[ J]. Automatica, 2017, 75: 144-153.
[12]诸静. 智能预测控制及其应用[M]. 杭州: 浙江大学出版社, 2000.