学报(中文)

基于多层次权重系数的结构动力学模型修正

展开
  • 上海交通大学 海洋工程国家重点实验室; 高新船舶与深海开发装备协同创新中心, 上海 200030

网络出版日期: 2017-11-30

基金资助

海洋工程国家重点实验室基金项目(1507)

Model Updating Analysis of Structural Dynamic Problem Based on Multi-Level Weight Coefficients

Expand
  • State Key Laboratory of Ocean Engineering; The Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200030, China

Online published: 2017-11-30

摘要

针对结构动力学模型修正问题,提出了一种改进的模型修正方法.在考虑模态频率因素和频率响应因素的模型修正方程基础上,建立了同时包含频率参数和结构响应参数的结构优化方程.根据复杂动力学问题中涉及的多参数因子和多层次问题,引入了多层次理论,提出了多层次权重系数问题,建立考虑多参数、多层次的结构动力学修正归一化模型.最后,以船艇基座结构为对象,开展了基座的模型修正数值计算.计算结果表明,所提出的方法可为复杂结构模型修正问题的研究提供新思路.

本文引用格式

陈炉云,杨念 . 基于多层次权重系数的结构动力学模型修正[J]. 上海交通大学学报, 2017 , 51(12) : 1415 -1421 . DOI: 10.16183/j.cnki.jsjtu.2017.12.002

Abstract

In the present article, a modified finite element model updating method for structural dynamic response was proposed. The model updating based on natural frequency and dynamic response parameter was established, respectively. The optimization formulation for dynamic model updating was deduced by consideration of frequency factor and dynamic response factor. Based on the multi-parameter factors and multi-level factors for the dynamic characteristics of the complex structure, the analytical hierarchy process approach was introduced to define of the weight coefficients. According to the dynamic model updating problem, the multi-hierarchy weight coefficient problem was presented, and the normalized model was established. Finally, a ship mounting structure was taken as an example, and its numerical analysis was carried out. The results demonstrated that the proposed method has provided a new approach to analyze the dynamic model updating problem of complex structure.

参考文献

[1]宋汉文, 王丽炜, 王文亮.有限元模型修正中若干重要问题[J].振动与冲击, 2003, 22(4): 68-72. SONG Hanwen, WANG Liwei, WANG Wenliang. Several important problems for updating finite element model[J]. Journal of Vibration and Shock, 2003, 22(4): 68-72. [2]STEENACKER G, GUILLAUME P. Finite element model updating taking into account the uncertainty on the model parameters estimates[J]. Journal of Sound and Vibration, 2006, 296 (4/5): 919-934. [3]李伟明, 洪嘉振, 张以帅.新的模型修正与模态扩展迭代方法[J].振动与冲击, 2010, 29(6): 4-7. LI Weiming, HONG Jiazhen, ZHANG Yishuai. New iterative method for model updating and modal expansion[J]. Journal of Vibration and Shock, 2010, 29(6): 4-7. [4]李伟明, 洪嘉振.基于频率函数的模型修正方法[J]. 上海交通大学学报, 2011, 45(10): 1455-1459. LI Weiming, HONG Jiazhen. Research on model updating method based on frequency response functions [J]. Journal of Shanghai Jiao Tong University, 2011, 45(10): 1455-1459. [5]袁永新, 戴华.用振动测量数据最优修正振型矩阵与质量矩阵[J]. 工程数学学报, 2007, 24(4): 632-638. YUAN Yongxin, DAI Hua. Optimal correction for modal matrix and mass matrix using tests date [J]. Chinese Journal of Engineering Mathematics, 2007, 24(4): 632-638. [6]LIM J H, HWANG D S, SOHN D W, et al. Improving the reliability of the frequency response dunction through semi-direct finite element model updating [J]. Aerospace Science and Technology, 2016, 54(4): 632-638. [7]吕中荣, 罗绍湘, 刘济科.利用响应灵敏度修正Gascogine天桥的有限元模型[J].中山大学学报(自然科学版), 2006, 45(3): 13-16 . L Zhongrong, LUO Shaoxiang, LIU Jike. Finite element model updating for gascogine bridge using response sensitivity[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2006, 45(3): 13-16. [8]ESFANDIARI A, RAHAI A, SANAYEI M, et al. Model updating of a concrete beam with extensive distributed damage using experimental frequency response function[J]. Journal of Bridge Engineering, 2016, 21(4): 1597-1614. [9]LIN R M, ZHU J .Finite element model updating using vibration test data under base excitation[J]. Journal of Sound and Vibration, 2007, 303(3/4/5): 596-613 . [10]HU S L J, LI H J, WANG S Q. Cross-model cross-mode method for model updating[J]. Mechanical Systems and Signal Processing, 2007, 21(4): 1690-1703. [11]PERERA R, RUIZ A. A multistage FE updating procedure for damage identification in large-scale structures based on multi-objective evolutionary optimization [J]. Mechanical System and Signal Processing, 2008, 22(4): 970-991. [12]黄民水, 朱宏平, 李鹏辉.结构模型修正中不同残差及权重系数研究[J]. 华中科技大学学报(城市科学版), 2008, 25(4): 142-146. HUANG Minshui, ZHU Hongping, LI Penghui. Study on different residual and weight coefficient in model updating of structure [J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2008, 25(4): 142-146. [13]秦仙蓉, 徐俭, 赵坤, 等.基于分层进化寻优的塔机结构有限元模型修正[J]. 同济大学学报(自然科学版), 2015, 43(6): 900-903. QIN Xianrong, XU Jian, ZHAO Kun, et al. Dyna-mic model hierarchy updating of tower cranes using evolutionary computation[J]. Journal of Tongji University (Natural Science), 2015, 43(6): 900-903. [14]杨智春, 王乐, 李斌, 等.结构动力学有限元模型修正的目标函数及算法[J].应用力学学报, 2009, 26(2): 288-296. YANG Zhichun, WANG Le, LI Bin, et al. Objective functions and algorithms in structural dynamic finite element model updating [J]. Chinese Journal of Applied Mechanics, 2009, 26(2): 288-296. [15]MOTTERSHEAD J E, LINK M, FRISWELL M I. The sensitivity method in finite element model updating: A tutorial [J]. Mechanical Systems and Signal Processing, 2011, 25(7): 2275-2296. [16]BAKIR P G, REYNDERS E, ROECK G D. An improved finite element model updating method by the global optimization technique ‘Coupled Local Minimizes’ [J]. Computers and Structures, 2008, 86(11/12): 1339-1352. [17]DAVOODI M R, AMIRI J V, GHOLAMPOUR S, et al. Determination of nonlinear behavior of a ball joint system by model updating [J]. Journal of Constructional Steel Research, 2012, 71(1): 52-62. [18]余坚, 谢寿生, 张子阳, 等.高压转子非线性接触模型的AC-PSO有限元修正[J]. 空军工程大学学报(自然科学版), 2013, 14(5): 1-4. YU Jian, XIE Shousheng, ZHANG Ziyang, et al. Nonlinear finite element contacting model updating in high pressure spool based on adaptive cloud PSO model[J]. Journal of Air Force Engineering University (Natural Science Edition), 2013, 14(5): 1-4. [19]申秀丽, 张野, 龙丹, 等.涡轮榫接结构多层次设计优化方法[J]. 航空动力学报, 2015, 30(12): 2824-2832. SHEN Xiuli, ZHANG Ye, LONG Dan, et al. Multi-level design and optimization of turbine joint structure [J]. Journal of Aerospace Power, 2015, 30(12): 2824-2832.
Options
文章导航

/