针对传统化学反应机理简化方法无法兼顾精度和计算量的问题,提出了耦合化学反应机理简化和优化方法(CROM).应用CROM成功实现了对RP-3航空煤油3组分替代燃料详细化学反应机理的简化和优化,得到包含47组分、94反应的优化机理.采用优化机理,数值模拟了RP-3航空煤油在激波管和对冲火焰装置中的燃烧过程,并将模拟结果与文献实验值和文献计算值进行对比验证.结果表明,该优化机理能够准确预测RP-3航空煤油的点火延迟时间和火焰传播速度,且比文献的化学反应机理规模更小、计算效率更高,具有较高的工程应用价值.
Since traditional chemical mechanism reduction method could not take in account of both accuracy and computation amount, CROM (Combined Reduction and Optimization Method) was proposed to solve this problem. CROM was successfully executed to develop 47 species and 94 reactions for the optimized mechanism for three-component RP-3 aviation kerosene surrogate fuel. Combustion in shock tube and counterflow flame was simulated using the optimized mechanism, and the results were compared with the experimental and calculated value in the literature. The results show that the optimized mechanism can accurately predict the ignition delay time and laminar flame speed. The optimized mechanism owns less scheme and high computation efficiency, and is of great engineering application value.
[1]DAGAUT P, CATHONNET M. The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling[J]. Progress in Energy and Combustion Science, 2006, 32(1): 48-92.
[2]PATTERSON P M, KYNE A G, POURASHANIAN M, et al. Combustion of kerosene in counterflow diffusion flames[J]. Journal of Propulsion and Power, 1999, 17(2): 453-460.
[3]肖保国, 杨顺华, 赵慧勇, 等. RP-3航空煤油燃烧的详细和简化化学动力学模型[J]. 航空动力学报, 2010, 25(9): 1948-1955.
XIAO Baoguo, YANG Shunhua, ZHAO Huiyong, et al. Detailed and reduced chemical kinetic mechanisms for RP-3 aviation kerosene combustion[J]. Journal of Aerospace Power, 2010, 25(9): 1948-1955.
[4]郑东, 于维铭, 钟北京. RP-3 航空煤油替代燃料及其化学反应动力学模型[J]. 物理化学学报, 2015, 31(4): 636-642.
ZHENG Dong, YU Weiming, ZHONG Beijing. RP-3 aviation kerosene surrogate fuel and the chemical reaction kinetic model[J]. Acta Physico-Chimica Sinica, 2015, 31(4): 636-642.
[5]范学军, 俞刚. 大庆 RP-3 航空煤油热物性分析[J]. 推进技术, 2006, 27(2): 187-192.
FAN Xuejun, YU Gang. Analysis of thermophysical properties of Daqing RP-3 aviation kerosene[J]. Journal of Propulsion Technology, 2006, 27(2): 187-192.
[6]XU Jiaqi, GUO Junjiang, LIU Aike, et al. Construction of autoignition mechanisms for the combustion of RP-3 surrogate fuel and kinetics simulation[J]. Acta Physico-Chimica Sinica, 2015, 31(4): 643-652.
[7]李象远. RP-3航油三组分替代燃料高温燃烧机理[EB/OL]. (2013-06-27) [2016-08-26] http:∥ccg.scu.edu.cn/mechanism/hangkongmei you/2016/0821/146.html, 2013.
[8]GUO Junjiang, HUA Xiaoxiao, WANG Fang, et al. Systematic approach to automatic construction of high-temperature combustion mechanisms of alkanes[J]. Acta Physico-Chimica Sinica, 2014, 30(6): 1027-1041.
[9]ELLIOTT L, INGHAM D B, KYNE A G, et al. Incorporation of physical bounds on rate parameters for reaction mechanism optimization using genetic algorithms[J]. Combustion Science and Technology, 2003, 175(4): 619-648.
[10]PEPIOT-DESJARDINS P, PITSCH H. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms[J]. Combustion and Flame, 2008, 154(1/2): 67-81.
[11]VAJDA S, VALKO P, TURANYI T. Principal component analysis of kinetic models[J]. International Journal of Chemical Kinetics, 1985, 17(1): 55-81.
[12]KEE R J, RUPLEY F M, MEEKS E, et al. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics[J]. Sandia Report, 1996, sand 96(3): 142-6.
[13]曾文, 李海霞, 马洪安, 等. RP-3 航空煤油模拟替代燃料的化学反应简化机理[J]. 推进技术, 2014, 35(8): 1139-1145.
ZENG Wen, LI Haixia, MA Hongan, et al. Reduced chemical reaction mechanism of surrogate fuel for RP-3 kerosene[J]. Journal of Propulsion Technology, 2014, 35(8): 1139-1145.
[14]CHEN Z. Studies on the initiation, propagation, and extinction of premixed flames[D].Princeton N J: Princeton University, 2009.
[15]俞刚, 范学军. 超声速燃烧与高超声速推进[J]. 力学进展, 2013, 43(5): 449-471.
YU Gang, FAN Xuejun. Supersonic combustion and hypersonic propulsion[J]. Advances in Mechanics, 2013, 43(5): 449-471.