研究了一类数的分解在算术级数中的分布问题,利用Selberg-Delange方法和Perron公式得到了一个精确的渐近公式,该结果是无条件的.
The distribution for some certain factorizations of the natural number in arithmetic progressions was studied and an asymptotic formula was obtained by Selberg-Delange method and Perron’s formula. The formula is unconditional.
[1]CANFIELD E R, ERDS P, POMERANCE C. On a problem of Oppenheim concerning “factorisatio numerorum”[J]. J Number Theory, 1983, 17(1): 1-28.
[2]LUCA F, MUKHOPADHYAY A, SRINIVAS K. Some results on Oppenheim’s “factorisatio numerorum” function[J]. Acta Arith, 2010, 142(1): 41-50.
[3]TENENBAUM G. Introduction to analytic and probabilistic number theory [M]. Cambridge: Cambridge University Press, 1995.
[4]CUI Z, WU J. The Selberg-Delange method in short intervals with an application[J]. Acta Arith, 2014, 163(3): 247-260.
[5]FENG B. On the arcsine law on divisors in arithmetic progressions[J]. Indagationes Mathematicae, 2016, 27(3): 749-763.
[6]FENG B, CUI ZHEN. DDT theorem over square-free numbers in short interval[J]. Front Math China, 2017, 12(2): 367-375.
[7]PAN C D, PAN C B. Fundamentals of analytic number theory [M]. Beijing: Science Press, 1991.