学报(中文)

浅海环境下低频声信号传播特性研究

展开
  • 1. 浙江海洋大学 海洋科学与技术学院, 海洋声学与遥感应用技术实验室, 浙江 舟山 316022; 2. 哈尔滨工程大学 水声工程学院, 水声技术重点实验室, 哈尔滨 150001

网络出版日期: 2017-11-30

基金资助

海洋科学浙江省重中之重学科开放课题(20160103),水产浙江省一流学科开放课题(20160004),浙江海洋学院科研启动金项目(21105013415)

Study on Propagation Characteristics of Low Frequency Acoustic Signal in Shallow Water Environment

Expand
  • 1. Marine Acoustic and Remote Sensing Laboratory, Institute of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China; 2. Acoustic Science and Technology Laboratory, College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China

Online published: 2017-11-30

摘要

针对典型浅海海洋环境下的低频声传播问题,以快速场方法为建模手段,以声能流为研究对象,结合具体算例模拟研究了不同浅海环境参数对低频声信号传播特性的影响规律.研究结果表明:矢量场中质点垂直振速传播衰减远大于同点声压与水平振速传播损失;海洋环境参数、声源参数、海底声学参数均对低频声信号传播具有重要影响,其中又以海底声速对声能量传播特性的影响最为显著.

本文引用格式

祝捍皓1,郑广学1,张海刚2,郑红1,林建民1,汤云峰1 . 浅海环境下低频声信号传播特性研究[J]. 上海交通大学学报, 2017 , 51(12) : 1464 -1472 . DOI: 10.16183/j.cnki.jsjtu.2017.12.009

Abstract

Targeted at the issue of low-frequency acoustic propagation in typical shallow water environment, and based on specific example simulation, the research of the influence law of different ocean environment parameters on the acoustic signal propagation at low frequency is performed through taking fast field method (FFM) as the modeling approach and acoustic energy flow as the research subject. The results have been proved that the transmission loss of vertical particle velocity is larger than that of pressure and horizontal particle velocity. Ocean environment parameters, sound source parameters and geo acoustic parameters all have important effects on acoustic signal propagation at low frequency, and the sound velocity in ocean bottom exerts the most significant influence.

参考文献

[1]SHCHUROV V A. Vector acoustic of the ocean[M]. Vladivostok: Dalhauka Press, 2006: 1-50. [2]惠俊英, 惠娟. 矢量声信号处理基础[M]. 北京: 国防工业出版社, 2009: 1-18. [3]YANG T C. Motion compensation for adaptive horizontal line array processing: A beam domain approach[J]. Journal of the Acoustical Society of America, 2003, 113(1): 245-260. [4]DALL’OSTO D R, DAHL P H, CHOI J W. Properties of the acoustic intensity vector field in shallow water waveguide[J]. Journal of the Acoustical Society of America, 2012, 131(3): 2023-2035. [5]卢再华, 张志宏, 顾建农. 低频声源海底地震波的时域合成波形分析[J]. 上海交通大学学报, 2014, 48(1): 50-55. LU Zaihua, ZHANG Zhihong, GU Jiannong. Analysis of synthetic seismograms at seafloor caused by low frequency sound source[J]. Journal of Shanghai Jiao Tong University, 2014, 48(1): 50-55. [6]戚聿波, 周士弘, 任云, 等. 浅海中利用单水听器的声源被动测距[J]. 声学学报, 2015, 40(2): 144-152. QI Yubo, ZHOU Shihong, REN Yun, et al. Passive source range estimation with a single receiver in shallow water[J]. Acta Acustica, 2015, 40(2): 144-152. [7]REN Q Y, HERMAND J P. Acoustic interferometry for geoacoustic characterization in soft-layered sediment environment[J]. Journal of the Acoustical Society America, 2013, 133(1): 82-93. [8]祝捍皓, 朴胜春, 张海刚, 等. 快速场(FFP)算法反演海底参数研究[J]. 哈尔滨工程大学学报, 2012, 33(5): 648-652. ZHU Hanhao, PIAO Shengchun, ZHANG Haigang, et al. The research for seabed parameters inversion with fast field program (FFP)[J]. Journal of Harbin Engineering University, 2012, 33(5): 648-652. [9]JENSEN F B, KUPERMAN W A, PORTER M B, et al. Computational ocean aounstics. New York: AIP Press, 1994: 92-192. [10]祝捍皓, 朴胜春, 张海刚, 等. 典型海底条件下抛物方程声场计算方法的缩比实验验证[J]. 上海交通大学学报, 2013, 47(4): 532-537. ZHU Hanhao, PIAO Shengchun, ZHANG Haigang, et al. Verification of the calculation of acoustic field with typical bottom based on parabplic equation in scaled tank experiment[J]. Journal of Shanghai Jiao Tong University, 2013, 47(4): 532-537. [11]张海刚. 浅海甚低频声传播建模与规律研究[D]. 哈尔滨:哈尔滨工程大学水声工程学院, 2010: 19-72. [12]朱哲民, 龚秀芬, 杜功焕. 声学基础[M]. 南京: 南京大学出版社, 2001: 10-100.
Options
文章导航

/