兵器工业

基于混合模糊多属性决策的复杂产品模块划分方案评价

展开
  • 1. 中国矿业大学 矿业工程学院, 江苏 徐州 221116; 2. 上海交通大学 机械与动力工程学院, 上海 200240

网络出版日期: 2017-11-30

基金资助

国家自然科学基金项目(51505480, 51475290),江苏省自然科学基金项目(BK20150197)

Evaluation Approach to Rank Module Partition Schemes of Complex Products Based on Hybrid Fuzzy Multi-Attribute Decision Making

Expand
  • 1. School of Mines, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; 2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2017-11-30

摘要

针对复杂产品的模块划分难以获得唯一方案问题,提出了一种基于混合模糊多属性决策理论的复杂产品模块划分方案评价方法.根据指标特性,分别运用区间数、三角模糊数、直觉模糊数和区间直觉模糊数对指标进行合理赋值;采用模糊层次分析法确定指标权重;基于逼近理想解(TOPSIS)排序框架计算备选方案到正、负理想解距离,根据综合相对贴进度进行方案排序.并以某品牌汽车发动机的模块划分方案为例,验证方法的有效性.

本文引用格式

李玉鹏1,连晓振1,卢成1,褚学宁2 . 基于混合模糊多属性决策的复杂产品模块划分方案评价[J]. 上海交通大学学报, 2017 , 51(11) : 1374 -1382 . DOI: 10.16183/j.cnki.jsjtu.2017.11.014

Abstract

Modular development can effectively deal with the complex coupling problems of function and structure in complex products. The basis of modularization makes it difficult to obtain the single module partition scheme for complex products. To solve this problem, a module partition scheme evaluation method for complex products is put forward based on the multi-attributes decision making approach under hybrid fuzzy environment. According to the properties of the indices, by means of the interval number, intuitionistic fuzzy number, triangular fuzzy number and interval intuitionistic fuzzy number, the indices are given reasonable value assignment, respectively. The weights of the indices are determined by fuzzy analytic hierarchy process(FAHP). Distance between alternatives to the positive or negative ideal solution is calculated on the basis of the framework of technique for order preference by similarity to ideal solution (TOPSIS), and the ranking order is obtained according to the comprehensive relative closeness degree. Finally, a case study of automobile engine module partition scheme evaluation is implemented to varify the effectiveness and efficiency of the proposed approach.

参考文献

[1]SMITH S, YEN C C. Green product design through product modularization using atomic theory[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26 (6): 790-798. [2]YU D, WU Y, LU T. Interval-valued intuitionistic fuzzy prioritized operators and their application in group decision making[J]. Knowledge-Based Systems, 2012, 30(6): 57-66. [3]LI Y, CHU X, CHU D, et al. An integrated module partition approach for complex products and systems based on weighted complex networks[J]. International Journal of Production Research, 2014, 52(15): 4608-4622. [4]侯亮, 唐任仲, 徐燕申. 产品模块化设计理论, 技术与应用研究进展[J]. 机械工程学报, 2004, 40(1): 56-61. HOU Liang, TANG Renzhong, XU Yanshen. Review of theory key technologies and its application of modular product design[J]. Chinese Journal of Mechanical Engineering, 2004, 40(1): 56-61. [5]JI Y, JIAO R J, CHEN L, et al. Green modular design for material efficiency: A leader-follower joint optimization model[J]. Journal of Cleaner Production, 2013, 41(2): 187-201. [6]SCHILLING M A, STEENSMA H K. The use of modular organizational forms: An industry-level analysis[J]. Academy of Management Journal, 2001, 44(6): 1149-1168. [7]王康, 张树生, 何卫平, 等. 基于SPEA2的复杂机械产品选择装配方法[J]. 上海交通大学学报, 2016, 50(7): 1048-1053. WANG Kang, ZHANG Shusheng, HE Weiping, et al. Selective assembly of complicated mechanical product based on SPEA2[J]. Journal of Shanghai Jiao Tong University, 2016, 50(7): 1048-1053. [8]徐泽水, 陈剑. 一种基于区间直觉判断矩阵的群决策方法[J]. 系统工程理论与实践, 2007, 27(4): 126-133. XU Zeshui, CHEN Jian. A group decision making method based on interval valued intuitionistic judgment matrix[J]. System Engineering Theory and Practice, 2007, 27(4): 126-133. [9]左冠丽, 褚学宁, 陈东萍, 等. 基于直觉模糊信息公理的产品服务方案选优[J]. 计算机集成制造系统, 2015, 21(4): 1134-1141. ZUO Guanli, CHU Xuening, CHEN Dongping, et al. Product service system optimal selection based on intuitionistic fuzzy information axiom[J]. Computer Integrated Manufacturing Systems, 2015, 21(4): 1134-1141. [10]BENTKOWSKA U, BUSTINCE H, JURIO A, et al. Decision making with an interval-valued fuzzy preference relation and admissible orders[J]. Applied Soft Computing, 2015, 35: 792-801. [11]DONG M, LI S, ZHANG H. Approaches to group decision making with incomplete information based on power geometric operators and triangular fuzzy AHP[J]. Expert Systems with Applications, 2015, 42(21): 7846-7857. [12]GENG X, CHU X, ZHANG Z. A new integrated design concept evaluation approach based on vague sets[J]. Expert Systems with Applications, 2010, 37(9): 6629-6638. [13]王文全, 黄胜, 王超, 等. 舰船通道布置方案的直觉模糊多属性群决策方法[J]. 上海交通大学学报, 2013, 47(6): 894-899. WANG Wenquan, HUANG Sheng, WANG Chao, et al. Intuitionistic fuzzy multiple attribute group decision-making for ship passage arrangement[J]. Journal of Shanghai Jiao Tong University, 2013, 47(6): 894-899. [14]YAGER R R. A note on measuring fuzziness for intuitionistic and interval-valued fuzzy sets[J]. International Journal of General Systems, 2015, 44 (7/8): 889-901. [15]LI Y P, CHU X N, CHU D X, et al. An integrated approach to evaluate module division schemes of complex products and systems based on interval-valued intuitionistic fuzzy sets[J]. International Journal of Computer Integrated Manufacturing, 2014, 27 (7): 675-689. [16]CHEN J F, HSIEH H N, DO Q H. Evaluating teaching performance based on fuzzy AHP and comprehensive evaluation approach[J]. Applied Soft Computing, 2015, 28: 100-108. [17]CHITHAMBARANATHAN P, SUBRAMANIAN N, GUNASEKARAN A, et al. Service supply chain environmental performance evaluation using grey based hybrid MCDM approach[J]. International Journal of Production Economics, 2015, 166: 163-176. [18]KHALILI-DAMGHANI K, TAVANA M, SANTOS-ARTEAGA F J. A comprehensive fuzzy DEA model for emerging market assessment and selection decisions[J]. Applied Soft Computing, 2016, 38(C): 676-702. [19]CHANG T H. Fuzzy VIKOR method: A case study of the hospital service evaluation in Taiwan[J]. Information Sciences, 2014, 271(7): 196-212. [20]PEI Z. A note on the TOPSIS method in MADM problems with linguistic evaluations[J]. Applied Soft Computing, 2015, 36(C): 24-35. [21]黄胜, 郭海鹏, 侯远杭, 等. 基于改进TOPSIS法的舰船总体方案群决策方法[J]. 上海交通大学学报, 2014, 48(1): 92-97. HUANG Sheng, GUO Haipeng, HOU Yuanhang, et al. Group decision-making method for warship based on improved TOPSIS[J]. Journal of Shanghai Jiao Tong University, 2014, 48(1): 92-97. [22]XU Z. Multiple-attribute group decision making with different formats of preference information on attributes[J]. IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics, 2007, 37 (6): 1500-1511. [23]YU X, XU Z. Prioritized intuitionistic fuzzy aggregation operators[J]. Information Fusion, 2013, 14 (1): 108-116. [24]王建, 庞永杰, 杨卓懿, 等. 改进模糊层次分析法在AUV总体性能评价中的应用[J]. 上海交通大学学报, 2015, 49(2): 275-280. WANG Jian, PANG Yongjie, YANG Zhuoyi, et al. Application of improved FAHP in evaluation of AUV overall performance[J]. Journal of Shanghai Jiao Tong University, 2015, 49(2): 275-280. [25]ZHANG Z, CHU X. Fuzzy group decision-making for multi-format and multi-granularity linguistic judgments in quality function deployment[J]. Expert Systems with Applications, 2009, 36(5): 9150-9158.
Options
文章导航

/