针对金属薄板在普旋成形时易出现法兰起皱失效的问题,开展了铝合金封头普旋成形的有限元仿真及实验研究,分析旋压法兰边的弹性应变能及其增量与起皱失稳之间的关系,提出了铝合金材料的起皱判据.结果表明:在金属薄板普旋成形过程中,旋轮给坯料施加的变形力导致了法兰边的弹性应变能增加和振荡.由于弹性应变能增量幅值的增加,法兰边和旋轮作用区围成的扇形区域中出现了不稳定区域,故产生失稳起皱.基于Drucker公设提出了法兰起皱的判据,并建立了计算流程.通过普旋实验的验证可知,该判据能较准确地预测旋压成形时法兰边的起皱缺陷.
Wrinkling is a common failure when the sheet metal is formed in conventional spinning. Hence, a lot of work has been done to accurately forecast the flange wrinkling. In this paper, the finite element simulation and experiments are established to study the deformation characteristic of the aluminum-alloy hemispherical seal head in conventional spinning, the influence of elastic strain energy and elastic strain energy increment on flange wrinkling is found, and a theoretical flange wrinkling criterion of aluminum alloy is proposed. The results show that deforming forces causes the increases and fluctuation of flange’s elastic strain energy. Due to the increasing of elastic strain energy increment’s amplitude, the unstable range appears in fan shaped area surrounded by flange edge and active region of spinning roller, and then results in flange wrinkling. This research proposes a flange wrinkling criterion based on Drucker postulate and establishes calculation process. It is proved by the experiment that this criterion can accurately predict the flange wrinkling in spinning.
[1]WONG C C, DEAN T A, LIN J. A review of spinning, shear forming and flow forming processes[J]. International Journal of Machine Tools and Manufacturing, 2003, 43: 1419-1435.
[2]RUNGE M. Spinning and flow forming[J]. Leifield GmbH, 1994, 9(1): 101-109.
[3]杨合, 詹梅, 李甜, 等. 铝合金大型复杂薄壁壳体旋压研究进展[J]. 中国有色金属学报, 2011, 21(10): 2534-2550.
YANG He, ZHAN Mei, LI Tian, et al. Advances in spinning of aluminum alloy large-sized complicated thin-walled shells[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(10): 2534-2550.
[4]SUN Y N, WAN M, WU X D. Wrinkling prediction in rubber forming of Ti-15-3 alloy[J]. Transactions of Nonferrous Metals Society of China (English Versions), 2013(10): 3002-3010.
[5]KOBAYASHI S. Instability in conventional spinning of cones[J]. Journal of Engineering for Industry-Transactions of the ASME (Series B), 1963, 85: 44-48.
[6]HAYAMA M, MUROTA T, KUDO H. Deformation modes and wrinkling of flange on shear spinning[J]. Bulletin of JSME, 1966, 9(34): 423-433.
[7]HAYAMA M, TAGO A. The fracture of walls on shear spinning: Study on the spinnability of aluminium plates[J]. Bulletin of the Faculty of Engineering, Yokohama National University, 1968, 17: 93-103.
[8]HAYAMA M, KUDO H, SHINOKURA T. Study of the pass schedule in conventional simple spinning[J]. Bulletin of the JSME, 1970, 13(65): 1358-1365.
[9]WANG X, CAO J. An analytical prediction of flange wrinkling in sheet metal forming[J]. Journal of Manufacturing Processes, 2000, 2(2): 100-107.
[10]KLEINER M, GOBEL R, KANTZ H, et al. Combined methods for the prediction of dynamic instabilities in sheet metal spinning[J]. CIRP Annals-Manufacturing Technology, 2002, 51(1): 209-214.
[11]WATSON M, LONG H. Wrinkling failure mechanics in metal spinning[J]. Procedia Engineering, 2014, 81: 2391-2396.
[12]耿艳青. 多道次普通旋压成形工艺试验及数值模拟研究[D]. 南昌: 南昌航空大学航空制造工程学院, 2012: 24-25.
[13]STOUGHTON T B, YOON J W. Review of Drucker’s postulate and the issue of plastic stability in metal forming[J]. International Journal of Plasticity, 2006, 22(3): 391-433.
[14]张柔雷. 关于塑性力学公设适用性的讨论[J]. 力学与实践, 1990, 12(6): 70.
ZHANG Roulei. Discussion on the applicability of plasticity mechanics’ postulates[J]. Mechanics in Engneering, 1990, 12(6): 70.
[15]王仁. 塑性力学引论[M].修订版.北京: 北京大学出版社, 1989: 126-127.
[16]徐秉业. 应用弹塑性力学[M]. 北京: 清华大学出版社, 1995: 120-121.
[17]林忠钦. 车身覆盖件冲压成形仿真[M],北京: 机械工业出版社, 2004: 59.