兵器工业

重檐歇山顶中国古建筑风压与风场数值模拟分析

展开
  • 上海交通大学 a. 船舶海洋与建筑工程学院; b. 高新船舶与深海开发装备协同创新中心; c. 海洋工程国家重点实验室, 上海 200240

网络出版日期: 2017-11-30

基金资助

国家自然科学基金项目(51679139, 51490674),上海领军人才计划项目(编号:20),高等学校博士学科点专项科研基金项目(20130073110096)

Numerical Simulation on Wind Pressure and Wind Field of Chinese Ancient Buildings with MultipleEave and DoublePitch Roof

Expand
  • a. School of Naval Architecture, Ocean and Civil Engineering; b. Collaborative Innovation Center for Advanced Ship and DeepSea Exploration (CISSE); c. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2017-11-30

摘要

运用ANSYS Fluent软件并引入Renormalizationgroup k-ε湍流模型,以北京天安门城楼复杂形体为对象,数值计算分析重檐歇山顶式古建筑的风压与风场特性,揭示了不同风向角下建筑风压与风场的变化规律,开展了城楼城台封闭和城台开敞、曲面斜坡屋面和直线斜坡屋面等对建筑风压和风场的影响.研究表明,风向角对建筑屋面和重檐风压分布影响显著;城台开敞可降低建筑周围整体气流流速,减小屋面和重檐的负风压;直线斜坡可降低屋面与重檐处气流速度,但将增大重檐间区域的气流速度.给出了无周边遮挡建筑物情况下重檐歇山顶古建筑的风荷载体型系数,可为此类古建筑的抗风设计提供技术参考.

本文引用格式

汪汛a,周岱a,b,c,李煜a,毛璐璐a,王子通a,向升a . 重檐歇山顶中国古建筑风压与风场数值模拟分析[J]. 上海交通大学学报, 2017 , 51(11) : 1287 -1296 . DOI: 10.16183/j.cnki.jsjtu.2017.11.002

Abstract

Taking Beijing Tiananmen as an object, wind pressure and wind field around ancient buildings of tower style with multipleeave and doublepitch roof are simulated numerically by using software ANSYS Fluent and Renormalizationgroup k-ε turbulence model. The laws of wind pressure and wind field of the buildings under different wind directions are investigated. Then the influences of key parameters are indicated, including the close or open platform as well as curvature slope or linear slope of roof. The results show that wind direction has a great influence on the wind pressure of roof and double eaves. In the case of open platform, the velocity of air flow around the building reduces while negative wind pressure on the roof and double eaves decreases. Linear slope can reduce the air flow velocity at roof and double eaves and it increases the air flow velocity between double eaves. After wind pressure on the building without surrounding barrier is analyzed, wind load shape coefficients for the windresistance design of this kind of the ancient buildings are recommended.

参考文献

[1]王锋. 从古建筑结构受力分析探讨其变形和稳定性[J]. 山西建筑, 2006, 32(19): 53-56. WANG Feng. Discuss on force, deformation and stability analysis of historic buildings[J]. Shanxi Architecture, 2006, 32(19): 53-56. [2]李桂荣, 郭恩栋, 朱敏. 中国古建筑抗震性能分析[J]. 地震工程与工程振动, 2004, 24(6): 68-72. LI Guirong, GUO Endong, ZHU Min. Analysis of seismic characteristics of Chinese ancient buildings[J]. Earthquake Engineering and Engineering Vibration, 2004, 24(6): 68-72. [3]卢旦, 李承铭. 上海世博会日本馆风荷载特性的数值模拟[J]. 建筑结构, 2009, 39(S1): 840-844. LU Dan, LI Chengming. Numerical simulation of wind-induced loads on roof of Japan pavilion of the world exposition in Shanghai[J]. Building Structure, 2009, 39(S1): 840-844. [4]彭兴黔, 徐刚, 刘春艳, 等. 客家土楼的屋盖表面风压分布规律研究[J]. 建筑结构学报, 2010(S2): 193-196. PENG Xingqian, XU Gang, LIU Chunyan, et al. Study on wind pressure on roof of Hakka Earth Buildings[J]. Journal of Building Structures, 2010 (S2): 193-196. [5]杨声虎. 唐代古建筑风荷载体型系数的数值风洞模拟计算[D]. 西安: 长安大学建筑工程学院, 2013. YANG Shenghu. The numerical wind tunnel simulation of the wind loadshape coefficient for the ancient buildings of tang dynasty[D]. Xi’an: Chang’an University, 2013. [6]黄本才. 结构抗风分析原理及应用[M]. 上海: 同济大学出版社, 2008. [7]王福军. 计算流体动力学分析: CFD 软件原理与应用[M]. 北京: 清华大学出版社, 2004. [8]孙晓颖, 许伟, 武岳. 钝体绕流中的计算域设置研究[C] ∥中国土木工程学会桥梁与结构工程分会风工程委员会. 第十三届全国结构风工程学术会议论文集(下册). 大连: 中国土木工程学会桥梁与结构工程分会风工程委员会, 2007: 1036-1041. [9]洪荣华, 汪汛, 周岱, 等. 架空碟形空间结构风场数值模拟和抗风优化[J]. 上海交通大学学报, 2016, 50(1): 22-29. HONG Ronghua, WANG Xun, ZHOU Dai, et al. Numerical simulation of wind field and wind-resistant shape optimization of built-no-stilts type disc-shape-like spatial structures[J], Journal of Shanghai Jiao Tong University, 2016, 50(1): 22-29. [10]AIJ. Recommendations for loads on building: Chapter 6[S]. Tokyo: Architectural Institution of Japan, 2004. [11]GB50009-2012.建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012.
Options
文章导航

/