兵器工业

硼钢热冲压产品的力学性能预测模型及U型件验证

展开
  • 上海交通大学 模具CAD国家工程研究中心, 上海 200030

网络出版日期: 2017-11-30

基金资助

国家自然科学基金项目(51105247,U1564203)

Model of Properties Prediction for Boron Steel Hot Stamping Products and Its Validation in a U-Cap Part

Expand
  • National Engineering Research Center of Die and Mold CAD, Shanghai Jiao Tong University, Shanghai 200030, China

Online published: 2017-11-30

摘要

针对热冲压成形过程,建立了硼钢微观组织和产品性能预测的模型,分别采用Li模型和K-M模型模拟热冲压过程中的扩散和非扩散型相变;在此基础上,分别采用硬度混合法则、强度经验公式和两相混合表象模型预测最终产品的硬度、强度和延伸率.将上述模型在有限元软件平台 LS-DYNA 上集成,并模拟了一个U型件的热冲压成形过程.通过U型件的组织含量和力学性能测量值与模拟值对比,证实了所建热冲压产品性能预测模型具有较好的准确性和可靠性.

本文引用格式

丁亚男,谭淑霖,韩先洪,崔振山 . 硼钢热冲压产品的力学性能预测模型及U型件验证[J]. 上海交通大学学报, 2017 , 51(11) : 1320 -1327 . DOI: 10.16183/j.cnki.jsjtu.2017.11.006

Abstract

A microstructure evolution model containing both diffusional phase transformation and non-diffusional phase transformation has been established to describe the ultra-high strength hot stamping process. A series of analytical and empirical models also have been introduced and compared to predict the hardness, strength and elongation of the final hot stamping parts, respectively. The above models were integrated in the commercial finite element analysis codes LS-DYNA, through which a U-cap part for hot stamping process was simulated, and the phase fraction and final mechanical properties were obtained. Experimental measured results show that the simulated values are acceptable and the proposed model is reliable.

参考文献

[1]YAO Y, MENG J P, MA L Y, et al. Study on hot stamping and usibor 1500P[J]. Applied Mechanics and Materials, 2013, 320: 419-425. [2]谢磊磊, 唐荻, 江海涛, 等. 汽车用先进高强钢的成形性能[J]. 塑性工程学报, 2013, 20(1): 84-88. XIE Leilei, TANG Di, JIANG Haitao, et al. Study on formability of advanced high strength steel for automobiles[J]. Journal of Plasticity Engineering, 2013, 20(1): 84-88. [3]ANDERSSON A. Numerical and experimental evaluation of springback in advanced high strength steel[J]. Journal of Materials Engineering and Performance, 2007, 16(3): 301-307. [4]BOK H H, LEE M G, PAVLINA E J, et al. Comparative study of the prediction of microstructure and mechanical properties for a hot-stamped B-pillar reinforcing part[J]. International Journal of Mechanical Sciences, 2011, 53(9): 744-752. [5]SHI Z M, LIU K, WANG M Q, et al. Thermo-mechanical properties of ultra high strength steel 22SiMn2TiB at elevated temperature[J]. Materials Science and Engineering: A, 2011, 528(10): 3681-3688. [6]KARBASIAN H, TEKKAYA A E. A review on hot stamping[J]. Journal of Materials Processing Technology, 2010, 210(15): 2103-2118. [7]RAVIER P, ARANDA L G, CHASTEL Y. Hot stamping experiment and numerical simulation of pre-coated USIBOR1500 quenchable steels[J]. SAE Technical Paper, 2003. [8]KIRKALDY J S, VENUGOPALAN D. Prediction of microstructure and hardenability in low-alloy steels[J]. Phase Transformations in Ferrous Alloys, 1983: 125-148. [9]LI M V, NIEBUHR D V, MEEKISHO L L, et al. A computational model for the prediction of steel hardenability[J]. Metallurgical and Materials Transactions B, 1998, 29(3): 661-672. [10]KERSTR M P, OLDENBURG M. Austenite decomposition during press hardening of a boron steel—Computer simulation and test[J]. Journal of Materials Processing Technology, 2006, 174(1): 399-406. [11]KOISTINEN D P, MARBURGER R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metallurgica, 1959, 7(1): 59-60. [12]LEE S J, LEE Y K. Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics[J]. Acta Materialia, 2008, 56(7): 1482-1490. [13]LEE S J, PAVLINA E J, VAN TYNE C J. Kinetics modeling of austenite decomposition for an end-quenched 1045 steel[J]. Materials Science and Engineering: A, 2010, 527(13): 3186-3194. [14]ZHU L J, GU Z W, HONG X U, et al. Modeling of microstructure evolution in 22MnB5 steel during hot stamping[J]. Journal of Iron and Steel Research, International, 2014, 21(2): 197-201. [15]HAMELIN C J, MURANSKY O, SMITH M C, et al. Validation of a numerical model used to predict phase distribution and residual stress in ferritic steel weldments[J]. Acta Materialia, 2014, 75: 1-19. [16]SPEER J G, ASSUNCO F C R, MATLOCK D K, et al. The “quenching and partitioning” process: Background and recent progress[J]. Materials Research, 2005, 8(4): 417-423. [17]SANTOFIMIA M J, ZHAO L, PETROV R, et al. Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel[J]. Acta Materialia, 2011, 59(15): 6059-6068. [18]CAIA Y J, HALIM F S, LI G H, et al. Hot stamping simulation and austenite decomposition modeling of an automobile cross member[J]. Procedia Engineering, 2011, 15: 4902-4907. [19]ANDREWS K W. Empirical formulae for the calculation of some transformation temperatures[J]. Journal of the Iron and Steel Institute, 1965, 203(7): 721-727. [20]HONEYCOMBE R W K. Steels: Microstructure and properties[M]. London: Edward Arnold, 1995. [21]BHADESHIA BKDH. Bainite in Steels. Number 504, The Institute of Materials[R]. London: 0-901462-95-0, 1992. [22]MAYNIER Ph, JUNGMANN B, DOLLET J. Creusot—Loire System for the Prediction of the Mechanical Properties of Low Alloy Steel Products[M]. Hardenability Concepts with Applications to Steel, TMS-AIME, Materials Park, Ohio, 1977: 518-545. [23]CUI J J, LEI C X, XING Z W, et al. Predictions of the mechanical properties and microstructure evolution of high strength steel in hot stamping[J]. Journal of Materials Engineering and Performance, 2012, 21(11): 2244-2254. [24]MATLOCK D K., SPEER J G. Third generation of AHSS: Microstructure design concepts[C]∥Microstructure and Texture in Steels. Springer, 2009: 185-205. [25]MILEIKO S T. The tensile strength and ductility of continuous fibre composites[J]. Journal of Materials Science, 1969, 4(11): 974-977. [26]许为宗. 超高强度增强塑性淬火-碳分配钢的组织设计[D]. 上海: 上海交通大学材料科学与工程学院, 2010. [27]DAVIES R G. The deformation behavior of a vanadium-strengthened dual phase steel[J]. Metallurgical Transactions A, 1978, 9(1): 41-52. [28]盈亮. 高强度钢热冲压关键工艺试验研究与应用[D]. 大连: 大连理工大学材料科学与工程学院, 2013. [29]TANG B T, WANG Q L, WANG Z Q, et al. The influence of deformation history on microstructure and microhardness during the hot stamping process of boron steel B1500HS[J]. International Journal of Materials and Product Technology, 2013, 46(4): 255-268. [30]MALINOWSKI Z, LENARD J G, DAVIES M E. A study of the heat-transfer coefficient as a function of temperature and pressure[J]. Journal of Materials Processing Technology, 1994, 41(2): 125-142. [31]CARON Etienne, DAUN Kyle J, WELLS Mary A. Experimental characterization of heat transfer coefficients during hot forming die quenching of boron steel[J]. Metallurgical and Materials transactions B, 2013, 44(2): 332-343. [32]郝新,韩先洪, 杨坤, 等. 热冲压过程中的模内传热现象[J]. 塑性工程学报, 2014, 21(2): 98-101. HAO Xin, HAN Xianhong, YANG Kun, et al. Theoretical and experiment research on heat transfer phenomena in hot stamping[J]. Journal of Plasticity Engineering, 2014, 21(2): 98-101.
Options
文章导航

/