兵器工业

防松帽搭接焊缝力学性能及分区建模方法

展开
  • 上海交通大学 机械系统与振动国家重点实验室; 上海市复杂薄板结构数字化制造重点实验室, 上海 200240

网络出版日期: 2017-11-30

Research on Mechanical Properties of Locking Cap Lap Welds and Partitioned Seam Weld Model

Expand
  • State Key Laboratory of Mechanical System and Vibration; Shanghai Key Laboratory of Digital Manufacture for Thinwalled Structures, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2017-11-30

摘要

为了建立精细有限元模型,提高焊缝疲劳寿命仿真预测精度,需准确获取焊缝区的组织及材料力学性能分布.通过金相试验得到了焊缝区域组织分布,结合硬度试验和经验公式获取了焊缝微小区域组织应力应变曲线参数.根据试验结果分析提出一种焊缝分区建模方法,并利用准静态拉伸试验验证了该方法的正确性,为进一步分析焊缝区域失效机制以及预测疲劳寿命奠定了基础.

本文引用格式

金雪,朱平,李晗,王庆 . 防松帽搭接焊缝力学性能及分区建模方法[J]. 上海交通大学学报, 2017 , 51(11) : 1297 -1303 . DOI: 10.16183/j.cnki.jsjtu.2017.11.003

Abstract

Locking caps are widelyused components in large engineering projects such as nuclear reactors and mining machines. In order to improve the precision of weld FE model and fatigue life prediction, it is required to obtain accurate microstructure and mechanical properties of the weld zone. In this research,the microstructure performance was studied by metallography, combined with hardness test and empirical formula to obtain stressstrain parameters of small regional organizations of the weld. Based on this, a partitioned seam weld modeling method was developed. The method was verified by quasistatic tensile test and lays the foundation for further analysis of failure mechanism and fatigue life prediction of weld zone.

参考文献

[1]WEI S T, LV D, LIU R D, et al. Similar and dissimilar resistance spot welding of advanced high strength steels: Welding and heat treatment procedures, structure and mechanical properties[J]. Science & Technology of Welding & Joining, 2014, 19(5): 427-435. [2]汤忠斌, 徐绯, 许泽建, 等. 焊缝结构微区材料力学性能研究[J]. 机械强度, 2010, 32(1): 58-63. TANG Zhongbin, XU Fei, XU Zejian, et al. Research on mechanical properties of micro-zones of welding line[J]. Journal of Mechanical Strength, 2010, 32(1): 58-63. [3]张腾, 周友龙, 刘拥军, 等. 6061铝合金车体搅拌摩擦焊接接头微型剪切试验研究[J]. 电焊机, 2012, 42(10): 92-95. ZHANG Teng, ZHOU Youlong, LIU Yongjun, et al. Research of the FSW joint of 6061 aluminum alloy by mini-shear-testing[J]. Electric Welding Machine, 2012, 42(10): 92-95. [4]DORN L, LEI B. Derivation of the characteristic virtues of the tensile and fracture mechanics test from the results of the microshear test[J]. Schweissen und Schneiden, 1992, 44 (8): 145-147. [5]PAVLINA E J, TYNE C J V. Uniform elongation and the stress-strain flow curve of steels calculated from hardness using empirical correlations[J]. Journal of Materials Engineering & Performance, 2015, 24(11): 4415-4420. [6]朱浩川, 姚谏. 不锈钢材料的应力-应变模型[J]. 空间结构, 2011, 17(1): 62-69. ZHU Haochuan, YAO Jian. Stress-strain model for stainless steel[J]. Spatial Structures, 2011, 17(1): 62-69. [7]RAMBERG W, OSGOOD W R. Description of stress-strain curves by three parameters[J]. Technical Report Archive & Image Library, 1943(902). [8]QUACH W M, HUANG J F. Two-stage stress-strain models for light-gauge steels[J]. Advances in Structural Engineering, 2014, 17(7): 937-949. [9]BRUDER T, STRZEL K, BAUMGARTNER J, et al. Evaluation of nominal and local stress based approaches for the fatigue assessment of seam welds[J]. International Journal of Fatigue, 2012, 34(1): 86-102. [10]AMODEO C M, LAI W, LEE J, et al. Failure modes of gas metal arc welds in lap-shear specimens of high strength low alloy (HSLA) steel[J]. Engineering Fracture Mechanics, 2014, 131: 74-99. [11]杨锋平, 孙秦. 薄板搅拌摩擦焊焊缝区应力集中的有限元分析[J]. 焊接学报, 2007, 28(12): 109-112. YANG Fengping, SUN Qin. Analysis of stress concentration in weld of sheets welded by friction stir welding using finite element method[J]. Transactions of the China Welding Institution, 2007, 28(12): 109-112. [12]蔡新荣, 韦生, 吕增, 等. 304/304L和316/316L奥氏体不锈钢焊接性能的对比与分析[J]. 钢结构, 2012(S1): 366-369. CAI Xinrong, WEI Sheng, L Zeng, et al. Comparison and analysis on welding performance between 304/304L and 316/316L austenitic stainless steels[J]. Steel Construction, 2012(S1): 366-369. [13]AFSHAN S, GARDNER L. The continuous strength method for structural stainless steel design[J]. Thin-Walled Structures, 2013, 68(10): 42-49. [14]ROSSI B, AFSHAN S, GARDNER L. Strength enhancements in cold-formed structural sections. Part II. Predictive models[J]. Journal of Constructional Steel Research, 2013, 83(4): 189-196. [15]QUACH W M, QIU P. Strength and ductility of corner materials in cold-formed stainless steel sections[J]. Thin-Walled Structures, 2014, 83(1): 28-42. [16]施欲亮, 朱平, 张宇, 等. 提高汽车碰撞仿真计算效率的网格规模控制方法[J]. 上海交通大学学报, 2008, 42(6): 905-909. SHI Yuliang, ZHU Ping, ZHANG Yu, et al. Methods of the mesh dimension constraint for enhancing the simulation efficiency of vehicle crash[J]. Journal of Shanghai Jiao Tong University, 2008, 42(6): 905-909.
Options
文章导航

/