兵器工业

16Mn钢摩擦螺柱焊接头的微观组织与局部腐蚀

展开
  • 1. 北京石油化工学院 能源工程先进连接技术研究中心, 北京 102617; 2. 北京化工大学 机电工程学院, 北京 100029

网络出版日期: 2017-11-30

基金资助

北京市自然科学基金项目(3152011),国家自然科学基金项目(51305036)

Microstructure and Local Corrosion Behavior of Friction Stud Welding of 16Mn Steel

Expand
  • 1. Research Center of Energy Engineering Advanced Joining Technology, Beijing Institute of Petrochemical Technology, Beijing 102617; 2. School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029

Online published: 2017-11-30

摘要

为了研究16Mn钢水下摩擦螺柱焊接头的微观组织及微区电化学腐蚀行为,采用扫描振动参比电极技术(SVET)和局部电化学阻抗谱(LEIS)对摩擦螺柱焊接头处不同区域的腐蚀电流密度及电化学阻抗进行了测试分析;采用金相显微镜和扫描电子显微镜观察了焊接接头腐蚀前后的金相组织和微观形貌;采用X射线应力测定仪测定了焊件不同区域的残余应力.结果表明:16Mn钢摩擦螺柱焊接件在焊缝区晶粒最为细小,组织最为致密;另外,焊件上的残余应力均呈现为压应力,且在焊缝处的压应力最小(-96MPa);SVET和LEIS试验结果表明,焊缝处的腐蚀电流密度最小,约为0.3霢/cm2,局部阻抗值最大,约为169k?.这说明在焊件接头各区域中,焊缝处的耐腐蚀性最好,原因可能是焊缝区的微观组织比较致密,并且残余应力较小.

本文引用格式

顾艳红1,马慧娟1,高辉1,车俊铁1,焦向东1,田路1,2 . 16Mn钢摩擦螺柱焊接头的微观组织与局部腐蚀[J]. 上海交通大学学报, 2017 , 51(11) : 1348 -1354 . DOI: 10.16183/j.cnki.jsjtu.2017.11.010

Abstract

In order to have a good understanding of the local corrosion behavior of 16Mn steel welded joint by friction stud welding technology, scanning vibrating electrode technique (SVET) and local electrochemical impedance spectroscopy (LEIS) were performed to investigate the corrosion current density and the impedance distribution of the welded 16Mn steel joint along stud, heat affected zone (HAZ), welded zone (WZ), another HAZ and base metal (BM). Metallographic microscope and scanning electron microscope (SEM) were used to observe the microstructure of welded joints. Residual stress in the different zones of the welded sample was measured by an X-ray stress tester. The results show that the weld zone has finer crystalline grains and denser microstructure than other zones. The residual stresses of the welded sample are shown as compressive stress, and the compressive stress in the weld zone is the smallest (-96MPa).The SVET and LEIS data indicate that the weld zone has the lowest current density (0.3霢/cm2) and the largest impedance (169k?), which may be due to the presence of the densest microstructure and the smaller residual stress in the weld zone, and shows the best corrosion resistance.

参考文献

[1]周灿丰, 焦向东, 陈家庆, 等. 海洋工程深水焊接新技术[J]. 焊接, 2006, 4: 11-15. ZHOU Canfeng, JIAO Xiangdong, CHEN Jiaqing, et al. New deepwater welding technologies applied in offshore engineering[J]. Welding, 2006, 4: 11-15. [2]徐亚国, 焦向东, 周灿丰, 等. 摩擦螺柱焊水下焊接工艺的初步研究[J]. 热加工工艺, 2015, 44(11): 190-192. XU Yaguo, JIAO Xiangdong, ZHOU Canfeng, et al. Preliminary study on underwater welding processes for friction stud welding[J]. Hot Working Technology, 2015, 44(11): 190-192. [3]JIAO X, GAO H, ZHAN H, et al. Influence of the bar shape on the welding quality of friction hydro pillar processing[C]∥TARN T J, CHEN S B, FANG G. Robotic Welding, Intelligence and Automation: RWIA’2010. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 361-367. [4]ZHANG X, DENG C, WANG D, et al. Improving bonding quality of underwater friction stitch welds by selecting appropriate plug material and welding parameters and optimizing joint design[J]. Materials & Design, 2016, 91: 398-410. [5]NENTWIG A W E, JENICEK A. Research into the possible applications of friction stud welding[J]. Welding and Cutting, 1994, 7: 36-40. [6]NICHOLAS E D. Underwater friction welding for electrical coupling of sacrificial anodes[C]∥The 16th Annual OTC. Houston: Offshore Technology Conference, 1984. [7]李奇, 赵军军, 马琳, 等. 7A52铝合金搅拌摩擦焊焊缝的电化学局部腐蚀行为[J]. 中国表面工程, 2010, 23(5): 78-81. LI Qi, ZHAO Junjun, MA Lin, et al. Electrochemical localized corrosion behaviour of friction stir welded seam of 7A52 Aluminum alloy[J]. China Surface Engineering, 2010, 23(5): 78-81. [8]王力伟, 杜翠薇, 刘智勇, 等. X70钢焊接接头在酸性溶液中的局部腐蚀SVET研究[J]. 腐蚀与防护, 2012, 33(11): 935-939. WANG Liwei, DU Cuiwei, LIU Zhiyong, et al. SVET characterization of localized corrosion of welded X70 pipeline steel in acid solution[J]. Corrosion & Protection, 2012, 33(11): 935-939. [9]ISAACS H S. The measurement of the galvanic corrosion of soldered copper using the scanning vibrating electrode technique[J]. Corrosion Science, 1988, 28(6): 547-558. [10]SINEBRYUKHOV S L, GNEDENKOV A S, MASHTALYAR D V, et al. PEO-coating/substrate interface investigation by localised electrochemical impedance spectroscopy[J]. Surface and Coatings Technology, 2010, 205(6): 1697-1701. [11]PENNEY D J, SULLIVAN J H, WORSLEY D A. Investigation into the effects of metallic coating thickness on the corrosion properties of Zn-Al alloy galvanising coatings[J]. Corrosion Science, 2007, 49(3): 1321-1339. [12]SANTOS A P D, MANHABOSCO S M, RODRIGUES J S, et al. Comparative study of the corrosion behavior of galvanized, galvannealed and Zn55Al coated interstitial free steels[J]. Surface and Coatings Technology, 2015, 279: 150-160. [13]BERTONCELLO J C B, MANHABOSCO S M, DICK L F P. Corrosion study of the friction stir lap joint of AA7050-T76511 on AA2024-T3 using the scanning vibrating electrode technique[J]. Corrosion Science, 2015, 94: 359-367. [14]WANG S, DING J, MING H, et al. Characterization of low alloy ferritic steel-Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET[J]. Materials Characterization, 2015, 100: 50-60. [15]SIDANE D, BOUSQUET E, DEVOS O, et al. Local electrochemical study of friction stir welded aluminum alloy assembly[J]. Journal of Electroanalytical Chemistry, 2015, 737: 206-211. [16]FRANKLIN M J, WHITE D C, ISAACS H S. Pitting corrosion by bacteria on carbon steel, determined by the scanning vibrating electrode technique[J]. Corrosion Science, 1991, 32(9): 945-952. [17]TRETHEWEY K R, SARGEANT D A, MARSH D J, et al. Applications of the scanning reference electrode technique to localized corrosion[J]. Corrosion Science, 1993, 35(1/2/3/4): 127-134. [18]潘全喜, 屈金山, 钟玉, 等. 16Mn钢埋弧焊接头组织及其性能研究[J]. 热加工工艺, 2007, 36(19): 42-44. PAN Quanxi, QU Jinshan, ZHONG Yu, et al. Study on microstructure and properties of 16Mn steel submerged arc welded joint[J]. Hot Working Process, 2007, 36(19): 42-44. [19]高辉, 焦向东, 周灿丰, 等. Q235钢摩擦叠焊单元成形焊接接头金相组织分析[J]. 焊接技术, 2013, 42(6): 12-14. GAO Hui, JIAO Xiangdong, ZHOU Canfeng, et al. Microstructure analysis of welded joint of Q235 steel friction welded joint[J]. Welding Technology, 2013, 42 (6): 12-14. [20]李云涛, 王宁煦, 金飞翔. A304不锈钢薄板激光焊接接头微观组织及电化学腐蚀研究[J]. 重型机械, 2014(3): 25-28. LI Yuntao, WANG Ningxu, JIN Feixiang. Microstructure and electrochemical corrosion of laser welded joint of A304 stainless steel sheet[J]. Heavy Machinery, 2014(3): 25-28. [21]李冬升, 陈希章, 戴起勋, 等. 超(超)临界火电用奥氏体不锈钢Super304的焊缝组织结构[J]. 上海交通大学学报, 2010(s1): 18-21. LI Dongsheng, CHEN Xizhang, DAI Qixun, et al. Microstructure of weld joint of Super304 austenitic steel used for ESC boiler[J]. Journal of Shanghai Jiao Tong University, 2010(s1): 18-21. [22]LI H B, JIANG Z H, FENG H, et al. Microstructure, mechanical and corrosion properties of friction stir welded high nitrogen nickel-free austenitic stainless steel[J]. Materials & Design, 2015, 84: 291-299. [23]WANG D, NI D R, XIAO B L, et al. Microstructural evolution and mechanical properties of friction stir welded joint of Fe-Cr-Mn-Mo-N austenite stainless steel[J]. Materials & Design, 2014, 64(9): 355-359. [24]MESHRAM S D, MADHUSUDHAN REDDY G, PANDEY S. Friction stir welding of maraging steel (Grade-250)[J]. Materials & Design, 2013, 49: 58-64. [25]ZHAO Y, SATO Y S, KOKAWA H, et al. Microstructure and properties of friction stir welded high strength Fe-36 wt%Ni alloy[J]. Materials Science and Engineering: A, 2011, 528(25/26): 7768-7773. [26]孔祥峰, 林涛, 陈华斌. 2219铝合金交叉焊缝的微观组织与力学性能分析[J]. 上海交通大学学报, 2010(s1): 95-98. KONG Xiangfeng, LIN Tao, CHEN Huabin. Microstructure and mechanical property of 2219 Aluminum alloy crossing joint[J]. Journal of Shanghai Jiao Tong University, 2010(s1): 95-98. [27]李达, 崔占全, 杨庆祥, 等. 7075A1与AZ31BMg摩擦搅拌焊焊接头的微观组织结构和性能研究[J]. 上海交通大学学报, 2012, 46(6): 679-683. LI Da, CUI Zhanquan, YANG Qingxiang, et al. Microstructure and property of friction stir welding joint of 7075A1 and AZ31BMg[J]. Journal of Shanghai Jiao Tong University, 2012, 46(6): 679-683. [28]SAEID T, ABDOLLAH-ZADEH A, ASSADI H, et al. Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel[J]. Materials Science & Engineering A, 2008, 496(1/2): 262-268. [29]卢庆华, 陈立功, 倪纯珍. A105钢振动焊接接头的断裂韧度分析[J]. 上海交通大学学报, 2007, 41(9): 1479-1483. LU Qinghua, CHEN Ligong, NI Chunzhen. The analysis of fracture toughness of A105 steel welded joint in vibratory welding conditioning[J]. Journal of Shanghai Jiao Tong University, 2007, 41(9): 1479-1483. [30]刘倩倩, 刘兆山, 宋森, 等. 残余应力测量研究现状综述[J]. 机床与液压, 2011, 39(11): 135-138. LIU Qianqian, LIU Zhaoshan, SONG Sen, et al. Review of research on residual stress measurement[J]. Machine Tools and Hydraulic, 2011, 39(11): 135-138. [31]李家宝, 盖秀颖, 徐建辉. 硬状态钢喷丸影响层组织强化的表征[J]. 材料研究学报, 2003, 17(2): 214-219. LI Jiabao, GAI Xiuying, XU Jianhui. Characterization of the effect of shot peening on the microstructure of hard steel[J]. Journal of Materials Research, 2003, 17(2): 214-219. [32]NOBRE J P, DIAS A M, GIBMEIER J, et al. Local stress-ratio criterion for incremental hole-drilling measurements of shot-peening stresses[J]. Journal of Engineering Materials & Technology, 2006, 128(2): 193-201.
Options
文章导航

/