兵器工业

 桥区船舶交通流可视分析系统

展开
  •  1. 武汉理工大学 智能交通系统研究中心, 武汉 430063; 2. 国家水运安全工程技术研究中心,
     武汉 430063; 3. 武汉理工大学  能源与动力工程学院, 武汉 430063;
    4. 闽江学院 经济与管理学院, 福州 350108

网络出版日期: 2017-07-31

基金资助

 

 Visual Analytic System of Vessel Traffic in Bridge Waterway

Expand
  •  1. Intelligent Transport System Research Center, Wuhan University of Technology,
     Wuhan 430063, China; 2. National Engineering Research Center for Water Transport Safety,
     Wuhan 430063, China; 3. School of Energy and Power Engineering, Wuhan University of
     Technology, Wuhan 430063, China; 4. School of Economics and Management,
    Minjiang University, Fuzhou 350108, China

Online published: 2017-07-31

Supported by

 

摘要

 以武汉长江大桥桥区水域为研究对象,针对数据分析能力不足而造成海量AIS(Automatic Identification System)数据不仅无法更好地助力水上交通安全,反而为监管决策带来困扰的现状,研究了多维AIS数据的可视化表达和人机交互方法.提出了以电子航道图为载体的内河船舶交通状态平行坐标图模型,并针对传统网格划分法的不足,采用高斯密度函数为核函数利用二维核密度估计法生成热力图模型.在此基础上研发了船舶交通可视化系统,通过3组实例证明该系统有助于桥区船舶数据的异常分析和船舶行为模式识别,为海事管理人员提供有效的决策依据.

本文引用格式

雷进宇1,2,3,初秀民1,2,何伟4,周映萍1,2 .  桥区船舶交通流可视分析系统[J]. 上海交通大学学报, 2017 , 51(7) : 840 -845 . DOI: 10.16183/j.cnki.jsjtu.2017.07.011

Abstract

 Current practice shows that working with bridge waterway automatic identification system (AIS) data often does not lead to insight but rather confusion because large data volume without further being processed is hard to understand. In order to deal with this issue, bridge waterway of Wuhan section in Yangtze River was selected as research area for the study of AIS visualization model and humancomputer interaction method. Additionally, two dimensional kernel density estimation approach was adopted in the heatmap generation to overcome the defects of traditional grid method. Furthermore, based on electric navigation charts, a visual analytics system was built. Finally, three instances were illustrated and results demonstrated that it is conductive to the users in maritime department to make decisions depending on the knowledge they discovered from the visual analytics system.

参考文献

 [1]徐武雄, 初秀民, 刘兴龙. 水上交通信息可视化技术研究进展[J]. 中国航海, 2015, 38(1):  3438.
XU Wuxiong, CHU Xiumin, LIU Xinglong. Advances of maritime traffic information visualization techniques[J]. Navigation of China, 2015, 38(1):  3438.
[2]ANDRIENKO G, ANDRIENKO N, BAK P, et al. Visual analytics of movement[M]. Berlin:  Springer, 2013: 13.
[3]熊振南, 程俊康, 翁跃宗. 点统计法在船舶交通流分析中的应用[J]. 中国航海, 2009, 32(1):  6467.
XIONG Zhennan, CHENG Junkang, WENG Yuezong. Application of pointstatistic method in the analysis of vessel traffic flow[J]. Navigation of China, 2009, 32(1):  6467.
[4]徐武雄, 初秀民, 刘兴龙. 多桥水域航道通过能力仿真研究[J]. 交通运输系统工程与信息, 2015, 15(3):  127133.
XU Wuxiong, CHU Xiumin, LIU Xinglong. Simulation for transit capacity of a multibridge waterway[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(3):  127133.
[5]SILVEIRA P A M, TEIXEIRA A P, SOARES C G. Use of AIS data to characterise marine traffic patterns and ship collision risk off the coast of Portugal[J]. Journal of Navigation, 2013, 66(6):  879898.
[6]甘浪雄, 张磊, 邹早建, 等. 基于场方法的船舶交通流分析[J]. 上海交通大学学报, 2014, 48(4): 551557.
GAN Langxiong, ZHANG Lei, ZOU Zaojian, et al. Analysis of vessel traffic flow based on field method[J]. Journal of Shanghai Jiao Tong University, 2014, 48(4): 551557.
[7]GUO H, WANG Z, YU B, et al. Tripvista:  Triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection[C]∥Pacific Visualization Symposium. USA:  IEEE, 2011:  163170.
[8]何兆成,周亚强,余志. 基于数据可视化的区域交通状态特征评价方法[J]. 交通运输工程学报, 2016, 16(1):  133140.
HE Zhaocheng, ZHOU Yaqiang, YU Zhi. Regional trafic state evaluation method based on data visualization[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1):  133140.
[9]ANDRIENKO G, ANDRIENKO N. Spatiotemporal aggregation for visual analysis of movements[C]∥Proceedings of IEEE Symposium on Visual Analytics Science & Technology IEEE Comput. Columbus, Ohio, USA: IEEE, 2008: 5158.
[10]WILLEMS N, SCHEEPENS R, VAN DE WETERING H, et al. Visualization of vessel traffic[M].  New York:  Springer, 2013:  7387.
[11]SCHEEPENS R, WILLEMS N, HUUB V D W, et al. Interactive visualization of multivariate trajectory data with density maps[C]∥Pacific Visualization Symposium. USA:  IEEE, 2011: 147154.
[12]SCHEEPENS R, HURTER C, VAN DE WETERING H, et al. Visualization, selection, and analysis of traffic flows[J].  IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1):  379388.
[13]WANG Z, LU M, YUAN X, et al. Visual traffic jam analysis based on trajectory data[J].  IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12):  21592168.
[14]姜晓睿, 郑春益, 蒋莉, 等. 大规模出租车起止点数据可视分析[J]. 计算机辅助设计与图形学学报, 2015, 27(10):  19071917.
JIANG Xiaorui, ZHENG Chunyi, JIANG Li, et al. Visual analysis of large taxi origindestination data[J]. Journal of ComputerAided Design & Computer Graphics, 2015, 27(10): 19071917.
[15]SILVERMAN B W. Density estimation for statistics and data analysis[M]. London:  CRC Press, 1986: 711.
Options
文章导航

/