兵器工业

 聚焦波与超大型浮体作用的非线性数值模拟

展开
  •  1. 江苏科技大学  船舶与海洋工程学院, 江苏 镇江 212003;
    2. 大连理工大学  深海研究中心, 辽宁 大连 116024

网络出版日期: 2017-07-31

基金资助

 

 Nonlinear Numerical Investigation on the Interaction of
 Focused Waves with Very Large Floating Structure

Expand
  •  1. School of Naval Architecture and Ocean Engineering, Jiangsu University of
     Science and Technology, Zhenjiang 212003, Jiangsu, China; 2. Deepwater
     Engineering Research Center, Dalian University of Technology, Dalian 116024, Liaoning, China

Online published: 2017-07-31

Supported by

 

摘要

 利用高阶边界元方法建立模拟聚焦波浪与弹性浮板作用的完全非线性二维时域数值水槽模型,其中指定2阶Stokes速度解析解产生聚焦波;采用混合欧拉拉格朗日方法追踪流体和结构表面变化,再利用梁自由振动的自然模态函数近似流固交界面的瞬时位移;使用4阶RungeKutta法更新水面及浮板位移和速度势.对比发现,该数学模型可以准确地模拟浮板在波浪作用下的水弹性响应和所期望的聚焦波浪.并进一步研究了浮板摆放条件、浮板厚度、聚焦波频率带宽和入射波幅对浮板水弹性响应的影响.

本文引用格式

程勇1,嵇春艳1,陆婷婷1,翟钢军2 .  聚焦波与超大型浮体作用的非线性数值模拟[J]. 上海交通大学学报, 2017 , 51(7) : 831 -839 . DOI: 10.16183/j.cnki.jsjtu.2017.07.010

Abstract

 This paper establishes a twodimensional fully nonlinear numerical wave tank for studying the interaction between focused waves and floating elastic plate. The secondorder Stokes wave velocity is given to generate the input wave. The mixed EulerianLagrangian approach is applied to track the transient free and plate surface. A series of modal functions with freeend conditions are adopted to interpolate the displacement, and then the fourthorder RungeKutta scheme is used to refresh profile and velocity potential. The numerical model is verified with existing numerical and experimental results. The effects of the design parameters on the responses are systematically analyzed.

参考文献

 [1]王志军, 李润培, 舒志. 箱式超大型浮体结构在不规则波中的水弹性响应[J]. 上海交通大学学报, 2001, 35(10): 14771480.
WANG Zhijun, LI Runpei, SHU Zhi. Hydroelastic response of boxtyped very large floating structure in irregular waves[J]. Journal of Shanghai Jiao Tong University, 2001, 35(10): 14771480.
[2]孙辉, 崔维成, 刘应中. 超大型浮体在二维不均匀底部上的水弹性响应[J]. 上海交通大学学报, 2003, 37(8): 11721175.
SUN Hui, CUI Weicheng, LIU Yingzhong. Hydroelastic response of very large floating structures over 2D variable bottom[J]. Journal of Shanghai Jiao Tong University, 2003, 37(8): 11721175
[3]ZHAO C B, HAO X C, LIANG R F, et al. Influence of hinged conditions on the hydroelastic response of compound floating structures[J]. Ocean Eng, 2015, 101: 1224.
[4]CHENG Y, ZHAI G J, OU J P. Timedomain numerical and experimental analysis of hydroelastic response of a very large floating structure edged with a pair of submerged horizontal plates[J]. Marine Struct, 2014, 39: 198224.
[5]LIU X D, SAKAI S. Time domain analysis on the dynamic response of a flexible floating structure to waves[J]. J Eng Mech, 2002, 128(1): 4856.
[6]KYOUNG J H, HONG S Y, KIM B W. FEM for time domain analysis of hydroelastic response of VLFS with fully nonlinear freesurface conditions[J]. Int J Offshore Polar, 2006,16(3): 168174.
[7]MOOLLAZADEH M, KHANJANI M J, TAVAKOLI A. Applicability of the method of fundamental solutions to interaction of fully nonlinear water waves with a semiinfinite floating ice plate[J]. Cold Reg Sci Technol, 2011, 69(1): 5258.
[8]MIRAFZALI F, TAVAKOLI A, MOLLAZADEH M. Hydroelastic analysis of fully nonlinear water waves with floating elastic plate via multiple knot Bsplines[J]. Appl Ocean Res, 2015, 51: 171180.
[9]BALDOCK T E, SWAN C, TAYLOR P H. A laboratory study of nonlinear surface waves on water[J]. Phil Trans R Sco Lond A, 1996, 354(1707): 649676.
[10]SHE K, GREATED C A, EASSIB W J. Experimental study of threedimensional wave kinematics[J]. Appl Ocean Res, 1997, 19: 329343.
[11]李俊, 陈刚, 杨建民. 深水畸形波的实验室物理模拟[J]. 中国海洋平台, 2009, 24(3): 2225.
LI Jun, CHEN Gang, YANG Jianmin. Simulation of deep water freak wave in laboratory[J]. China Offshore Platform, 2009, 24(3): 2225.
[12]YONG C C, WU C H, KUO J T, et al. A higherorder σcoordinate nonhydrostatic model for nonlinear surface waves[J]. Ocean Eng, 2007, 34(10): 13571370.
[13]TURNBULL M S, BORTHWICK A G L, EATOCK T R. Numerical wave tank based on a σtransformed finite element inviscid flow solver[J]. International Journal for Numerical Methods in Fluids, 2003, 42(6): 641663.
[14]宁德志, 滕斌, 谭丽, 等. 完全非线性聚焦波浪的数值模拟[J].水科学进展, 2008, 19(6): 875881.
NING Dezhi, TENG Bin, TAN Li et al. Numerical simulation of fully nonlinear focused wave groups[J]. Advances In Water Science, 2008, 19(6): 875881.
[15]NING D Z, TENG B, EATOCK T R, et al. Numerical simulation of nonlinear regular and focused waves in an infinite waterdepth[J]. Ocean Eng, 2008, 35: 887899.
[16]BAI W, TAYLOR R E. Fully nonlinear simulation of wave interaction with fixed and floating flared structures[J]. Ocean Eng, 2009, 36: 223236.
[17]WALKER D A G, TAYLOR R E, TAYLOR P H, et al. Wave diffraction and neartrapping by a multicolumn gravitybased structure[J]. Ocean Eng, 2008, 35(2): 201229.
[18]李金宣, 王占行, 柳淑学. 多向聚焦波浪作用下直立圆柱受力的试验研究[J]. 水动力学研究与进展, 2012, 27(4): 409416.
LI Jinxuan, WANG Zhanhang, LIU Shuxue. Experimental study of impact force on a vertical cylinder in multidirectional focused wave[J]. Chinese Journal of Hydrodynamics, 2012, 27(4): 409416.
[19]REDDY J N. An introduction to the finite element method[M]. 3rd ed. New York: McGrawHill; 2005.
[20]SCHAFFER H A. Secondorder wavemaker theory for irregular waves[J]. Ocean Eng, 1996, 23(1): 4788.
[21]NEWMAN J N. Wave effects on deformable bodies[J]. Appl Ocean Res, 1994, 16: 4759.
Options
文章导航

/