兵器工业

 高强钢高效加工层切面铣刀优化设计及仿真分析

展开
  •  哈尔滨理工大学 机械动力工程学院, 哈尔滨 150080

网络出版日期: 2017-08-30

基金资助

 

 Optimum Design and Simulation Analysis of Slice Cutter for
 HighEfficient Machining with High Strength Steel

Expand
  •  School of Mechanical Power Engineering, Harbin University of Science and Technology, Harbin 150080, China

Online published: 2017-08-30

Supported by

 

摘要

 利用层切面铣刀对508III钢进行铣削试验,分析切削参数对切削力的影响;以最优加工效率和刀具寿命为目标建立切削参数优化模型,采用遗传算法进行优化,并根据切削参数对刀具结构进行设计;对不同前角组合的刀片进行切削仿真,优化刀齿的角度参数;结合优化的切削参数,对层切面铣刀进行切削力仿真验证.研究工作将为重型高效铣削刀具开发和切削参数优化等提供基础和技术支撑.

本文引用格式

程耀楠,韩禹,关睿,徐明,卢真真 .  高强钢高效加工层切面铣刀优化设计及仿真分析[J]. 上海交通大学学报, 2017 , 51(8) : 1006 -1012 . DOI: 10.16183/j.cnki.jsjtu.2017.08.016

Abstract

 Milling tests for 508III steel are carried out to analyze the impact of cutting parameters on cutting force by using sliced milling cutters. A cutting parameters optimum model is established under the objective of processing efficiency and tool life. Genetic algorithm is applied to optimize the cutting parameters, and the tool structure is designed according to the cutting parameters. Simulations of the blade are carried out by the combination of different rake angles to optimize the angle parameters. Simulations of cutting force are completed according to the optimization cutting parameters. The research can provide technical support for tool development and cutting parameters optimization for highefficient heavy milling water chamber head.

参考文献

 [1]HE G H, LIU X L, YAN F G. Research on the dynamic mechanical characteristics and turning tool life under the conditions of excessively heavyduty turning[J]. Front Mech Eng A, 2012, 7(3): 329334.
[2]董定乾, 崔振山, 陈飞. 核电用SA5083钢的奥氏体晶粒生长过程模拟[J]. 上海交通大学学报, 2015, 49(10): 15041509.
DONG Dingqian, CUI Zhenshan, CHEN Fei. Simulation of austenite grain growth process of SA5083 steel for nuclear power plant[J]. Journal of Shanghai Jiao Tong University, 2015, 49(10): 15041509.
[3]程耀楠, 刘献礼, 李振加, 等. 极端重载切削条件下的刀具粘结失效研究[J]. 机械工程学报, 2012, 48(19): 169176.
CHENG Yaonan, LIU Xianli, LI Zhenjia, et al. Studying tool bond failure under extreme heavy load cutting[J]. Journal of Mechanical Engineering, 2012, 48(19): 169176.
[4]FU R D, WANG T S, ZHOU W H, et al. Characterization of precipitates in a 2.25Cr1Mo0.25V steel for large seale cast forged products[J]. Materials Characterization, 2007, 58(10): 968973.
[5]程耀楠, 韩禹, 卢真真, 等. 水室封头高效加工层切铣刀优化设计及分析[J]. 哈尔滨理工大学学报, 2015, 20(3): 17.
CHENG Yaonan, HAN Yu, LU Zhenzhen, et al. Based on layer milling cutter optimization design and analysis for the head of the water chamber[J]. Journal of Harbin University of Science and Technology, 2015, 20(3): 17.
[6]勋建国. 一种新型阶梯铣削方法的研究与实践[J]. 内蒙古工业大学学报,2002(23): 6771.
XUN Jianguo. A new research method and practice about step milling technology[J]. Journal of Inner Mongolia University of Technology, 2002(23): 6771.
[7]王荣国. 可转位刀片阶梯式端铣刀应用实践[J]. 新技术新工艺,1985, 8: 2223.
WANG Rongguo. Application practice in index able inserts of stepwise end milling cutter [J]. New Technology and New Process, 1985, 8: 2223.
[8]武文革, 庞学慧, 常兴. 自阶梯层剥强力端铣刀的基本原理[J]. 工具技术, 1998(8): 2326.
WU Wenge, PANG Xuehui, CHANG Xing. Theory of selfgraded power face milling cutters[J]. Tool Technology, 1998, 32(8): 2326.
[9]CHENG Yaonan, LIU Li, LU Zhenzhen, et al. Study on the adhering failure mechanism of cemented carbide inserts and element diffusion model during the heavyduty cutting of water chamber head[J]. International Journal of Advanced Manufacturing Technology, 2015, 80(9): 18331842.
[10]周鹤良. 重型切削实用技术手册[M]. 北京: 机械工业出版社, 1996.
[11]LI Jibo, ZHANG Dinghua, WU Baohai. Optimization of material removal strategy in milling of thinwalled parts[J]. Journal of Harbin Institute of Technology, 2011, 18(5): 108112.
[12]鲍治国, 万金梁, 马西锋. 基于遗传算法具有容错能力的图像滤波器优化设计[J]. 上海交通大学学报, 2015, 49(8): 11811190.
Options
文章导航

/