兵器工业

基于灰色理论的新陈代谢自适应多参数预测方法 

展开
  •  西北工业大学 航天学院; 航天飞行动力学技术重点实验室, 西安 710072

网络出版日期: 2017-08-30

基金资助

 

 Metabolism Adaptive MultiParameter Prediction
 Method Based on Grey Theory

Expand
  •  School of Astronautics; Science and Technology on Aerospace Flight Dynamics Laboratory,
     Northwestern Polytechnical University, Xi’an 710072, China

Online published: 2017-08-30

Supported by

 

摘要

 针对少数据、小样本序列的预测问题,在分析常规灰色GM(1,1)预测模型缺点的基础上提出了优化的算法模型,将优化后的预测方法推广为多参数预测.首先,建立了利用最新量测量进行初始化的预测模型,然后通过新陈代谢的方法利用新信息代替旧信息实现等维的模型预测,同时引入衰减记忆最小二乘法对新旧信息进行加权处理,背景值以归一化的平均相对误差作为精度检验标准,采用粒子群算法自适应寻优.最后,通过对某型惯性测量单元(IMU)的标定参数稳定性进行预测,预测结果平均相对误差降低了6%~58%,表明预测方法可以应用于IMU标定参数的长期稳定性预测.

本文引用格式

张朝飞,罗建军,徐兵华,马卫华 . 基于灰色理论的新陈代谢自适应多参数预测方法 [J]. 上海交通大学学报, 2017 , 51(8) : 970 -976 . DOI: 10.16183/j.cnki.jsjtu.2017.08.011

Abstract

 The application of measured shortterm data to the prediction of longterm stability of weapon system is significant to shorten the production cycle of weapons. Considering such prediction problems as inadequate data and small sample sequence, optimized algorithm model was presented based on the drawback analysis of GM(1,1) prediction model. The optimized prediction methods were generalized as multiparameter prediction. At first, the model which used the latest measured data for initialization was established, followed by replacing the old information with the latest through metabolic approaches to realize equal dimension model predication. In addition, fading memory recursive least squares method was adopted for weighted handling of old and new information. The normalized mean relative error was used as accuracy test standard for background value and particle swarm optimization algorithm was adopted. Finally, the calibration parameters stability of a certain type of inertial measurement unit (IMU) was predicted, and the average relative error of the prediction results was reduced by 6%~58%. The results indicate that the prediction method can be applied to the longterm stability of IMU calibration parameters.

参考文献

 [1]HEIJDEN M V D, VELIKOVA M, LUCAS P J F. Learning Bayesian networks for clinical time series analysis[J]. Journal of Biomedical Informatics, 2013, 48(2): 94105.
[2]TIAN W D, HU M G, LI C K. Fault prediction based on dynamic model and grey time series model in chemical processes[J]. Chinese Journal of Chemical Engineering, 2014, 22(6): 643650.
[3]谭鹏, 曹平. 基于灰色关联支持向量机的地表沉降预测[J]. 中南大学学报(自然科学版), 2012, 43(2): 632637.
TAN Peng, CAO Ping. Predicting surface settlement of tunnel using greyrelationalsupport vector machine[J]. Journal of Central South University (Science and Technology), 2012, 43(2): 632637.
[4]李松, 刘力军, 翟曼. 改进粒子群算法优化BP神经网络的短时交通流预测[J]. 系统工程理论与实践, 2012 (9): 20452049.
LI Song, LIU Lijun, ZHAI Man. Prediction for short term traffic flow based on modified PSO optimized BP neural network[J]. Systems EngineeringTheory & Practice, 2012 (9): 20452049.
[5]朱晓菲, 王国华, 张欣豫, 等. 基于遗传新陈代谢灰色模型的电子设备故障预测模型[J]. 现代电子技术, 2014, 37(1): 8689.
ZHU Xiaofei, WANG Guohua, ZHANG Xinyu, et al. Research on failure prediction of electronic equipment based on genetic metabolism grey model[J]. Modern Electronics Technique, 2014, 37(1): 8689.
[6]罗党, 刘思峰, 党耀国. 灰色模型GM(1,1)优化[J]. 中国工程科学, 2003, 5(8): 5053.
LUO Dang, LIU Sifeng, DANG Yaoguo. The optimization of grey model GM(1,1)[J]. Engineering Science, 2003, 5(8): 5053.
[7]郭阳明, 姜红梅, 翟正军. 基于灰色理论的自适应多参数预测模型[J]. 航空学报, 2009, 30(5): 925931.
GUO Yangming, JIANG Hongmei, ZHAI Zhengjun. Adaptive multiparameter prediction model based on grey theory[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5): 925931.
[8]李丁, 夏露. 改进的粒子群优化算法在气动设计中的应用[J]. 航空学报, 2012, 10(10): 18091816.
LI Ding, XIA Lu. Application of improved particle swarm optimization algorithm to aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2012, 10(10): 18091816.
[9]许榕,周东,蒋士正,等. 自适应粒子群神经网络交通流预测模型[J]. 西安交通大学学报, 2015 (10): 103108.
XU Rong, ZHOU Dong, JIANG Shizheng, et al. A traffic forecasting model using adaptive particle swarm optimization trained neural network[J]. Journal of Xi’an Jiaotong University, 2015 (10): 103108.
[10]党建军, 罗建军, 万彦辉. 基于单轴速率转台的捷联惯测组合标定方法[J]. 航空学报, 2010, 31(4): 806811.
Options
文章导航

/