兵器工业

 多段翼型的大粒径过冷水滴结冰特征及气动影响分析

展开
  •  1. 上海交通大学 航空航天学院, 上海 200240;
     2. 中国航发商用航空发动机有限责任公司,上海 200241

网络出版日期: 2017-08-30

基金资助

 

 An Investigation on the Characteristics of Supercooled Large
 Droplet Icing Accretions and  Aerodynamic Effects on
 HighLift Configuration

Expand
  •  1. School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. AECC Commercial Aircraft Engine Co., Ltd., Shanghai 200241, China

Online published: 2017-08-30

Supported by

 

摘要

 基于验证有效的SJTUICE(Shanghai Jiao Tong University Icing Simulation Code)数值方法,模拟了大粒径过冷水滴(SLD)条件下多段翼型冰形特征,并与常规粒径条件作对比,通过计算流体力学方法分析了多段翼型在SLD条件与常规粒径条件结冰对气动影响的差异性.结果表明:SLD条件下,缝翼处结出的角冰更大且位置更靠后,襟翼处结冰的影响尤为明显,向前生长出较大冰角,造成缝道处流场严重改变.攻角6°~22° 范围内,SLD结冰对气动性能的改变远大于常规粒径条件,其中400μm粒径水滴结冰后最大升力系数的下降达63.5%,失速攻角大幅提前8°.

本文引用格式

李冬1,张辰1,王福新1,刘洪1,杨坤2 .  多段翼型的大粒径过冷水滴结冰特征及气动影响分析[J]. 上海交通大学学报, 2017 , 51(8) : 921 -931 . DOI: 10.16183/j.cnki.jsjtu.2017.08.005

Abstract

 This paper uses SJTUICE (Shanghai Jiao Tong University Icing Simulation Code) method of prediction and develops method for the aerodynamic analysis on highlift configurations. After validating the supercooled large droplet (SLD), particle trajectory and icing prediction on multielement airfoils, this paper characterizes the SLD icing accretions and aerodynamic effects on highlift configurations and compares them with nonSLD conditions. The result indicates that the quantity of ice increases, and the upwind horn on the suctionside of the slat grows lager and extends downstream under SLD condition. It is remarkable to detect that the SLD condition induces the large increment of horn ice on leading edge of flap. The ice shape has a larger growth angle that is about to lead to the clogging of the gap. With the angle of attack ranging from 6° to 22°, the SLD condition has a larger degradation on the aerodynamic performance comparison with nonSLD condition. It leads to the decreasing of lift coefficient by 63.5% and causes stall to occur 8° earlier.

参考文献

 [1]FAA A. Engine certification requirements in supercooled large drop, mixed phase, and ice crystal icing conditions[J]. Federal Register, 2010, 75(124): 3731137339.
[2]AKHURST R J. Aircraft accident report: Inflight icing encounter and loss of control, simmons airlines, d.b.a. American eagle flight 4184, Avions de transport regional (ATR) model 72212, n401am, Roselawn, Indiana, October 31, 1994[J]. Journal of Clinical Investigation, 2002, 109(12), 15331536.
[3]Ice Protection Harmonization Working Group. Working group report on supercooled large droplet rulemaking[R]. Washington: Transport Airplane Directorate IPHWG Task 2 Report, Submitted to the Transport Airplane Engine Issues Group, 2005.
[4]GE 791 Occurrence Investigation Report. Inflight icing encounter and crash into the sea, Transasia airways flight 791, ATR72200, B22708, 17 kilometers southwest of Makung city, Penghu islands, Taiwan, December 21, 2002  (ASCAOR0504001)[R]. Taibei, China: GE, 2002.
[5]李焱鑫. 面向SLD适航需求的大型客机翼型结冰安全性研究[D]. 上海: 上海交通大学航空航天学院, 2013.
[6]National Transportation Safety Board. Crash during takeoff in icing conditions, Canadair, Ltd  (CL6002A12, N873G)[R].  Montrose: NTSB/AAB, 2006.
[7]SPANGLER C, PARK A. Loss of control on approach Colgan Air, Inc. operating as continental connection flight 3407 Bombardier DHC8400[C]∥Clarence Center. ACM SIGGRAPH. New York: ACM, 2010: 1.
[8]DAVID C P. Developing critical ice shapes for use in aircraft development and certification[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2007: 91.
[9]DEAN R M, Mark G P. Preliminary investigation of ice shape sensitivity to parameter variations[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2005: 73.
[10]DEAN R M, Mark G P. Additional investigations of ice shape sensitivity to parameter variations[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2006: 469.
[11]LUXFORD G, HAMMOND D W, IVEY P. Modelling, imaging and measurement of distortion, drag and breakup of aircrafticing droplets[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2005: 71.
[12]TAN S C. Effects of large droplet dynamics on airfoil impingement characteristics[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2005: 74.
[13]张辰, 孔维梁, 刘洪. 大粒径过冷水滴结冰模拟破碎模型研究[J]. 空气动力学学报, 2013(2): 144150.
ZHANG Chen, KONG Weiliang, LIU Hong. Study on simulation model of icing simulation of large diameter supercooled water droplets[J]. Journal of Aerodynamics, 2013(2): 144150.
[14]TAN S C, PAPADAKIS M. Simulation of SLD impingement on a highlift airfoil[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2006: 463.
[15]KAREV A R, FARZANEH M, LOZOWSKI E P. Character and stability of a winddriven supercooled waterfilm on an icing surface. I. Laminar heat transfer[J]. International Journal of Thermal Sciences, 2003, 42: 481498.
[16]KAREV A R, FARZANEH M,LOZOWSKI E P. Character and stability of a winddriven supercooled water film on an icing surface. II. Transition and turbulent heat transfer[J]. International Journal of Thermal Sciences, 2003,42: 499511.
[17]KONG W L, LIU H. An ice accretion model for aircraft icing based on supercooled icing: Theory and application[C]∥50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville: AIAA, 2012: 1205.
[18]KONG W L,LIU H. Development and theoretical analysis of an aircraft supercooled icing model[J]. Journal of Aircraft, 2014, 51(3): 975986. DOI: 10.2514/1.C032450.
[19]BROEREN A P, LAMARRE C M, BRAGG M B, et al. Characteristics of SLD ice accretions on airfoils and their aerodynamic effects[J]. AIAA Paper, 2005, 1065: 75.
[20]LEE S. Effects of supercooled largedroplet icing on airfoil aerodynamics[D]. USA: University of Illinois at UrbanaChampaign, 2001.
[21]李焱鑫, 张辰, 刘洪, 等. 大粒径过冷水溢流结冰的翼型气动影响分析[J]. 空气动力学学报, 2014, 32(3): 376382.
LI Yanxin, ZHANG Chen, LIU Hong, et al. Pneumatic effect analysis of airfoil with large diameter supercooled water overflow[J]. Journal of Aerodynamics, 2014, 32 (3): 376382.
[22]SANKAR L N, PHAENGSOOK N, BANGALORE A. Effects of icing on the aerodynamic performance of high lift airfoils[C]∥31st Aerospace Sciences Meeting. Reno, NV, USA: [s.n.], 1993. DOI: 10.2514/6.199326.
[23]LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669767
[24]张辰. 动力学效应影响下的大粒径过冷水成冰机理研究[D]. 上海: 上海交通大学航空航天学院, 2012.
[25]GHARALI K, GU M, JOHNSON D A. A PIV study of a low Reynolds number pitch oscillating SD7037 airfoil in dynamic stall with CFD comparison[C]∥16th International Symposium on Applications of Laser Techniques to Fluid Mechanics. Lisbon: DE Fredberg, 2012.
[26]BROEREN A P, BRAGG M B, ADDY H E, et al. Effect of highfidelity iceaccretion simulations on fullscale airfoil performance[J]. Journal of Aircraft, 2010, 47(1): 240254.
[27]MARK G P, NASA J H. Ice mass measurements: Implications for the ice accretion process[C]∥41st Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2003: 387.
[28]WILLIAM B W, MARK G P. Semiempirical modeling of SLD physics[C]∥42nd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2004: 412.
Options
文章导航

/