兵器工业

 含滤波的改进自适应反演控制器在飞艇中的应用

展开
  •  上海交通大学 航空航天学院, 上海 200240

网络出版日期: 2017-08-30

基金资助

 

 Command Filtered Adaptive Backstepping Control for Airships

Expand
  •  School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2017-08-30

Supported by

 

摘要

 针对系统不确定性和外界干扰条件下飞艇降落过程的控制问题,利用飞艇的6自由度非线性动力学模型设计了基于滤波器的含修正补偿的改进自适应反演控制器,并通过Lyapunov理论验证了系统的稳定性.结果表明,指令滤波器和改进的反演控制律能够减小气动误差并抑制外部扰动不确定性的突变.即使飞艇控制系统中存在不确定因素以及外界扰动,带滤波的改进自适应反演控制方法也可以确保飞艇沿既定路线降落.

本文引用格式

韩玎,王晓亮,陈丽,段登平 .  含滤波的改进自适应反演控制器在飞艇中的应用[J]. 上海交通大学学报, 2017 , 51(8) : 909 -914 . DOI: 10.16183/j.cnki.jsjtu.2017.08.003

Abstract

 As stratospheric platforms, stratospheric airships are generally so large, it is difficult for them to land back on ground accurately after their tasks. Consequently, the control problem of airship landing with system uncertainties and external disturbances is considered. A sixdegreeoffreedom airship model is used, and a command filtered modified backstepping control law combined with adaptive theory is designed based on Lyapunov theory. The command filter and the improved backstepping algorithm can deal with the uncertainties in both dynamic errors and the external disturbances. Numerical simulation results demonstrate good performance for the landing of the airship even under wind condition.

参考文献

 [1]HAN D, WANG X L, CHEN L, et al. Commandfiltered backstepping control for a multivectored thrust stratospheric airship[J]. Transactions of the Institute of Measurement and Control, 2015, 38(1): 112.
[2]SMITH S, FORTENBERRY M, LEE M, et al. HiSentinel80: Flight of a high altitude airship[C]∥11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Virginia Beach, USA: AIAA, 2011.
[3]Aviation Safety Boeing Commercial Airplanes. Statistical summary of commercial jet airplane accidents worldwide pperations (1959—2008) [EB/OL]. [20160512]. http:∥www.planecrashinfo.com/cause.htm.
[4]王晓亮, 单雪雄, 陈丽. 平流层飞艇流固耦合分析方法研究[J]. 宇航学报, 2011, 32(1): 2228.
WANG Xiaoliang, SHAN Xuexiong, CHEN li. The study of fluidstructure interaction computation method for stratosphere airship[J]. Journal of Astronautics, 2011, 32(1): 2228.
[5]WAGNER T, VALASEK J. Digital autoland control laws using quantitative feedback teory and direct digital design[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 13991413.
[6]STEVENS B L, LEWIS F L. Aircraft control and simulation[M]. 2nd ed. Hoboken: John Wiley & Sons, 2015.
[7]LIAO F, WANG J L, POH E K, et al. Faulttolerant robust automatic landing control design[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 854871.
[8]张昊, 陈丽. 多螺旋桨浮空器LPV鲁棒变增益H∞控制[J]. 计算机仿真, 2014, 31(5): 7277.
ZHANG Hao, CHEN Li. Robust variable gaincontrol for multipropeller aerostat based on LPV H∞[J]. Computer Simulation, 2014, 31(5): 7277.
[9]欧阳晋, 屈卫东, 席裕庚. 平流层验证飞艇的建模与分析[J]. 上海交通大学学报, 2003, 37(6): 956960.
OUYANG Jin, QU Weidong, XI Yugeng. Stratospheric verifying airship modeling and analysis[J]. Journal of Shanghai Jiao Tong University, 2003, 37(6): 956960.
[10]GOMES S B V, RAMOS J J G. Airship dynamic modeling for autonomous operation[C]∥IEEE International Conference on Robotics & Automation. Leuven, Belgium: IEEE, 1998.
[11]FARRELL J A, POLYCARPOU M M. Adaptive approximation based control: Unifying neural, fuzzy and traditional adaptive approximation approaches[M]. Hoboken, USA: John Wiley, 2006.
[12]SONNEVELDT L. Adaptive backstepping flight control for modern fighter aircraft[M]. Zutphen, Netherlands: Whrmann Print Service, 2010.
[13]李家宁. 平流层飞艇定点控制技术研究[D]. 南京: 南京航空航天大学自动化学院, 2009.
Options
文章导航

/