兵器工业

 基于连续稀疏重构的宽频段欠定波达方向估计

展开
  •  解放军电子工程学院

网络出版日期: 2017-09-20

基金资助

 国家自然科学基金(61171170),安徽省自然科学基金(1408085QF115)资助

 Broadband Underdetermined Direction of Arrival Estimation Based on
 Continuous Sparse Recovery

Expand
  •  Electronic Engineering Institute of PLA

Online published: 2017-09-20

Supported by

 

摘要

 针对宽频段欠定波达方向估计问题,提出一种基于连续稀疏重构的波达方向估计方法.首先利用方向波数对互质阵列接收数据进行降维处理,接着对协方差矩阵向量化提高自由度;然后利用方向波数的空间稀疏性建立连续稀疏模型,通过求解相应的凸优化问题及多项式求根得到方向波数的高精度估计;最后结合Capon波束方法的思想实现频率和方向波数的配对.该方法有效避免了传统稀疏重构算法中由于角度域离散化所导致的模型失配对估计性能的影响,提高了估计精度和分辨力,可估计信号个数要大于实际阵元数.理论分析与仿真验证了本方法的正确性与有效性.

本文引用格式

吴晨曦,张旻,王可人 .  基于连续稀疏重构的宽频段欠定波达方向估计[J]. 上海交通大学学报, 2017 , 51(9) : 1131 -1137 . DOI: 10.16183/j.cnki.jsjtu.2017.09.017

Abstract

 For the problem of broadband underdetermined direction of arrival (DOA) estimation, a novel DOA estimation algorithm is proposed based on the continuous sparse recovery. Firstly, the dimension of coprime array receiving data is reduced by using direction wavenumber and the covariance matrix is vectorized to improve the degree of freedom. Then, the continuous sparse recovery model of direction wavenumber is established using the spatial sparseness of direction wavenumber, and the estimation of direction wavenumber is achieved with convex optimization and polynomial rooting. Finally, the signal frequencies and direction wavenumbers are pair matched by using Capon method. With this method, offgrid effects caused by discretizing this range onto a grid in traditional sparse recovery can be neglected, it also improves accuracy and resolution of DOA estimation and the number of sources estimated by the proposed algorithm is larger than the number of actual arrays. Theoretical analysis and simulations demonstrate the effectiveness and feasibility of the proposed method.

参考文献

 [1]刘晓军, 刘聪锋, 廖桂生. 窄带信号频率和角度估计新方法[J]. 西安电子科技大学学报: 自然科学版, 2010, 37(3): 481486.
LIU Xiaojun, LIU Congfeng, LIAO Guisheng. Novel method for the narrowband signal frequency and angle estimation[J]. Journal of Xidian University:  Nature Science Edition, 2010, 37(3): 481486.
[2]沈志博, 赵国庆, 董春曦, 等. 基于压缩感知的频率和DOA联合估计算法[J]. 航空学报, 2014, 35(5): 13571364.
SHEN Zhibo, ZHAO Guoqing, DONG Chunxi, et al. United frequency and DOA estimation algorithm based on compressed sensing[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):  13571364.
[3]刘聪锋, 廖桂生. 宽带接收机的窄带信号频率和二维角度估计新方法[J]. 电子学报, 2009, 37(3): 523528.
LIU Congfeng, LIAO Guisheng. Novel method of narrow band signal frequency and 2D angle estimation for wide band receiver[J]. Acta Electronica Sinica, 2009, 37(3):  523528.
[4]沈志博, 董春曦, 黄龙, 等. 基于压缩感知的宽频段二维DOA估计算法[J]. 电子与信息学报, 2014, 36(12):  29352941.
SHEN Zhibo, DONG Chunxi, HUANG Long, et al. Broadband 2D DOA estimation based on compressed sensing[J]. Journal of Electronics & Information Technology, 2014, 36(12): 29352941.
[5]李鹏飞, 张旻, 钟子发, 等. 基于空域稀疏表示的宽频段DOA估计[J].电子与信息学报, 2012, 34(2): 404409.
LI Pengfei, ZHANG Min, ZHONG Zifa, et al. Broadband DOA estimation based on sparse representation in spatial frequency domain[J]. Journal of Electronics & Information Technology, 2012, 34(2): 404409.
[6]HERMAN M, STROHMER T. General deviants:  An analysis of perturbations in compressive sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):  342349.
[7]PAL P, VAIDYANATHAN P P. Nested arrays:  A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transaction on Signal Processing, 2010, 58(8):  41674181.
[8]PAL P, VAIDYANATHAN P P. Sparse sensing with coprime samplers and arrays[J]. IEEE Transaction on Signal Process, 2011, 59(2):  573586.
[9]HE Z Q, SHI Z P, HUANG L. Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting[J]. IEEE Signal Processing Letters, 2015, 22(4):  435439.
[10]SHEN Q , LIU W, CUI W, et al. Lowcomplexity directionofarrival estimation based on wideband coprime arrays[J]. IEEE Transactions on Audio, Speech and Language Processing, 2015, 23(9): 14451456.
[11]樊劲宇, 顾红, 苏卫民, 等. 基于张量分解的互质阵MIMO雷达目标多参数估计方法[J]. 电子与信息学报, 2015, 37(4):  933938.
FAN Jinyu, GU Hong, SU Weimin, et al. Coprime MIMO radar multiparameter estimation based on tensor decomposition[J]. Journal of Electronics & Information Technology, 2015, 37(4):  933938.
[12]QIN S, ZHANG Y D, AMIN M G. Generalized coprime array configurations for directionofarrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6):  13771390.
[13]SHEN Z B, DONG C X, DONG Y Y, et al. Broadband DOA estimation based on nested arrays[J]. International Journal of Antennas and Propagation, 2015, 29(3):  113118.
[14]L W, WANG H. Joint DOA and frequency estimation based on spatiotemporal coprime sampling[C]∥Wireless Communications & Signal Processing (WCSP), 2015 International Conference on. New Zealand: IEEE, 2015:  15.
[15]CANDS E J, FERNANDEZ GRANDA C. Superresolution from noisy data[J]. Journal of Fourier Analysis and Applications, 2013, 19(6):  12291254.
[16]CANDS E J, FERNANDEZ GRANDA C. Towards a mathematical theory of super resolution[J]. Communications on Pure and Applied Mathematics, 2014, 67(6):  906956.
[17]GRANT  M, BOYD S. CVX:  Matlab software for disciplined convex programming, version 1.21[J]. Global Optimization, 2008: 155210.
Options
文章导航

/