兵器工业

 管道小缺陷超声检测传感器阵列电路设计

展开
  •  江苏大学  仪器科学与工程系

网络出版日期: 2017-09-20

基金资助

 

 Design of Transducer Array Circuit for
 Pipeline Tiny Defect Ultrasonic Testing

Expand
  •  Department of Instrument Science and Engineering, Jiangsu University

Online published: 2017-09-20

Supported by

 

摘要

 针对现有的管道缺陷超声阵列检测技术发射声能低、小缺陷检出率低以及电路结构复杂的问题,设计了一种8通道阵列收发电路.发射电路采用单片机控制发射电路产生时序和重复频率均可调的8路高压窄脉冲,实现阵列的激发.接收电路采用数控模拟多路复用器,实现接收电路的分时复用.将该阵列电路用于管道试样检测中,能够检测出直径2mm、高3.6mm的平底孔和长×宽×高为10mm×0.5mm×1.5mm的裂纹,测量壁厚的平均误差达到0.51%,且电路稳定可靠.

本文引用格式

宋寿鹏,江洲,王治有,倪英杰 .  管道小缺陷超声检测传感器阵列电路设计[J]. 上海交通大学学报, 2017 , 51(9) : 1076 -1082 . DOI: 10.16183/j.cnki.jsjtu.2017.09.009

Abstract

  A novel 8channel array emitting and singlechannel receiving circuit is designed to solve the problems of low acoustic emission energy, low tiny flaw detection rate and complex circuit structure for pipeline flaw ultrasonic array detection. A singlechipmicrocomputer is applied to generate 8channel control signals for emission circuit stimulating adjustable time sequence and repetition frequency. Then, the transducers are stimulated by the 8channel highvoltage narrow pulses. A multiplexer is used in receiving circuit for echo signal time sharing multiplex. The designed array circuit is applied to pipeline sample ultrasonic testing. Artificial flatbottom hole with 2mm diameter and 3.6mm height and crack with 10mm length, 0.5mm width and 1.5mm height are inspected by using the designed circuit. In the experiments, wall thickness is also measured with an average relative error of 0.51%. Testing results show that the circuit is stable and reliable.

参考文献

 [1]芮华,徐大专. 一种新型数字化超声波自动探伤系统的研制[J]. 仪器仪表学报, 2005, 26(9): 957960.
RUI Hua, XU Dazhuan. Research on a new digital automatic ultrasonic inspection system[J]. Chinese Journal of Scientific Instrument, 2005, 26(9): 957960.
[2]易立单, 宋寿鹏, 丁丽娟,等. 基于低压电源的超声波发射电路设计[J]. 仪器仪表学报, 2008, 29(4): 558561.
YI Lidan, SONG Shoupeng, DING Lijuan, et al. The transmitting circuit design for ultrasonic based on low power[J]. Chinese Journal of Scientific Instrument, 2008, 29(4): 558561.
[3]陈先中, 张争, 王伟. 大量程超声波回波测距系统的研究[J]. 仪器仪表学报, 2004, 25(4): 179182.
CHEN Xianzhong, ZHANG Zheng, WANG Wei. Study of long distance pulse echo system with ultrasonic ware[J]. Chinese Journal of Scientific Instrument, 2004, 25(4): 179182.
[4]SVILAINIS L, CHAZIACHMETOVAS A, DUMBRAVA A. Half bridge topology 500V pulser for ultrasonic transducer excitation[J]. Ultrasonics, 2015, 59: 7985.
[5]MAADI M, BAYAM B. Custom integrated circuit design for ultrasonic therapeutic CMUT array[J]. Microsystem Technologies, 2015, 21: 875891.
[6]张云, 徐衍亮, 李豹. 基于动态电源的MOSFET驱动优化[J]. 电工技术学报, 2013, 28(12): 269275.
ZHANG Yun, XU Yanliang, LI Bao. Research on optimization of MOSFET driving based on dynamic power source[J]. Transactions of China Electrotechnical Society, 2013, 28(12): 269275.
[7]CHOI H, SHUNG K K. Novel power MOSFETbased expander for high frequency ultrasound systems[J]. Ultrasonics, 2014, 54(1): 121130.
[8]游江通, 刘松平, 宋秀荣. 一种新颖的宽带窄脉冲超声波发生电路[J]. 航空制造技术, 2004 (4): 8891.
YOU Jiangtong, LIU Songping, SONG Xiurong. A new broadband narrow pulse ultrasonic generating circuit[J]. Aeronautical Manufacturing Technology, 2004 (4): 8891.
[9]孙玉坤, 陈晓平. 电路原理[M]. 北京: 机械工业出版社, 2006:119122.
[10]内山明治, 村野靖. 运算放大器电路[M]. 北京: 科学出版社, 2009: 107113.
[11]孟丽霞, 于林丽, 濮钰麒,等. 微小信号放大电路设计[J]. 仪器仪表学报, 2006, 27(6): 10121013.
MENG Lixia, YU Linli, PU Yuqi, et al. Design of amplifying circuit for tiny signal[J]. Chinese Journal of Scientific Instrument, 2006, 27(6): 10121013.
[12]王成,宋寿鹏,张恒,等. 厚圆片超声换能器电路系统设计[J]. 测控技术, 2013, 32(3): 111114.
WANG Cheng, SONG Shoupeng, ZHANG Heng, et al. Design of circuit system for thick wafer ultrasonic transducer[J]. Measurement & Control Technology, 2013, 32(3): 111114.
[13]何峥嵘. 运算放大器电路的噪声分析和设计[J]. 微电子学,2006, 36(2): 148153.
HE Zhengrong. Noise analysis and design of operational amplifier circuits[J]. Microelectronics, 2006, 36(2): 148153.
Options
文章导航

/