兵器工业

 车身阻尼材料的布置优化方法

展开
  •  上海交通大学 机械系统与振动国家重点实验室;
    上海市复杂薄板结构数字化制造重点实验室,  上海 200030

网络出版日期: 2017-09-20

基金资助

 

 Optimal Design of Damping Material Configuration in Vehicle

Expand
  •  State Key Laboratory of Mechanical System and Vibration; Shanghai Key Laboratory of Digital
     Manufacture for Thinwalled Structures, Shanghai Jiao Tong University, Shanghai 200030, China

Online published: 2017-09-20

Supported by

 

摘要

 通过建立车身的声固耦合有限元模型,分析了车身在低频段的声压频响函数,截取了20~200Hz范围内的4个主要峰值频率以分析壁板贡献度;对车身地板的阻尼材料敷设位置进行优化,并以阻尼材料的厚度为设计变量,以阻尼材料的总质量最小为目标,将 Kriging近似建模技术与粒子群算法相结合对车身地板的阻尼材料敷设厚度进行优化,提出了一种基于壁板贡献度的分析方法和基于改进的粒子群优化算法的车内阻尼材料布置优化方法.结果表明,在保证车内峰值声压不增大的情况下,采用所提优化方法能够达到阻尼材料质量降低52.0%的效果,并通过简易车身装置的实验验证了优化方法的有效性.

本文引用格式

赵建轩,王增伟,刘钊,朱平 .  车身阻尼材料的布置优化方法[J]. 上海交通大学学报, 2017 , 51(9) : 1036 -1042 . DOI: 10.16183/j.cnki.jsjtu.2017.09.003

Abstract

 In order to consider the vehicle interior noise reduction, a finite element method (FEM)  model was established for a simple car. Sound pressure level (SPL) frequency response function was analyzed at low frequency phase. Four main peak frequencies in the range of 20Hz to 200Hz and those body panels contributions were focused. The layout of the damping materials was optimized. With the objective of minimizing the mass of damping material, and variables of the thickness of damping materials, by using Kriging metamodeling technique and particle swarm optimization (PSO), optimization method of damping configuration was proposed based on panel contribution. The mass of damping materials was reduced by 52.0% under the requirement that the SPL of peak frequencies did not increase, and the experiment was done to verify the effectiveness of the method.

参考文献

 [1]梁新华. 汽车车身薄壁件阻尼复合结构振动声学分析与优化[D]. 上海: 上海交通大学机械与动力工程学院, 2007.
 [2]张志飞, 倪新帅, 徐中明, 等. 基于结构优化的商用车驾驶室模态特性改进[J]. 汽车工程, 2011, 33(4): 290293.
ZHANG Zhifei, NI Xinshuai, XU Zhongming, et al. Modal characteristics improvement of a commercial vehicle cab based on structural optimization[J]. Automotive Engineering, 2011, 33(4): 290293.
[3]AKANDA A, GOETCHIUS G M. Representation of constrained/unconstrained layer damping treatments in FEA/SEA vehicle system models: A simplified approach[C]∥Proceedings of the 1999 Noise and Vibration ConferenceP342. USA: SAE, 1999: 342356. DOI: 10.4271/1999011680.
 [4]郑玲, 谢熔炉, 王宜, 等. 基于优化准则的约束阻尼材料优化配置[J]. 振动与冲击, 2010, 29(11): 156160.
ZHENG Ling, XIE Ronglu, WANG Yi, et al. Optimal configuration of constrained damping materials based on optimization criterion[J]. Journal of Vibration and Shock, 2010, 29(11): 156160.
[5]杨德庆. 动响应约束下阻尼材料配置优化的拓扑敏度法[J]. 上海交通大学学报, 2003, 37(8): 12091212.
YANG Deqing. Topological sensitivity method for the optimal placement of unconstrained damping materials under dynamic response constraints[J]. Journal of Shanghai Jiao Tong University, 2003, 37(8): 12091212.
[6]郭中泽, 陈裕泽, 侯强, 等. 阻尼材料布局优化研究[J]. 兵工学报, 2007, 28(5): 638640.
GUO Zhongze, CHEN Yuze, HOU Qiang, et al. Damping material optimal placement in damping structure design[J]. Acta Armamentarii, 2007, 28(5): 638640.
[7]张一麟, 廖毅, 莫品西, 等. 基于车身模态和板块贡献分析的阻尼优化降噪方法研究[J]. 振动与冲击, 2015, 34(4): 153157.
ZHANG Yilin, LIAO Yi, MO Pinxi, et al. Damping optimization noise reduction technique based on modal and panel contribution analysis[J]. Journal of Vibration and Shock, 2015, 34(4): 153157.
[8]郑玲, 唐重才, 韩志明, 等. 车身结构阻尼材料减振降噪优化设计[J]. 振动与冲击, 2015, 34(9): 4247.
ZHENG Ling, TANG Zhongcai, HAN Zhiming, et al. Optimal design of damping material topology configuration to suppress interior noise in vehicle[J]. Journal of Vibration and Shock, 2015, 34(9): 4247.
[9]SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4): 409423.
[10]LIU Z, LU J H, ZHU P. Lightweight design of automotive composite bumper system using modified particle swarm optimizer[J]. Composite Structures, 2016, 140(5): 630643.
Options
文章导航

/