无线无源赋予声表面波(Surface Acoustic Wave, SAW)传感器的显著特点使其在物联网、智能电网、智慧城市等领域日益受到关注.综述了上海交通大学在SAW基础理论、器件精确仿真分析建模、传感器无线阅读装置设计、信息获取及处理算法以及应用等方面的研究成果,详细介绍了面向智能化配网中压开关柜动静触头温度、环网柜电缆终端头温度以及配网变压器油温/油位监测的声表面波无线无源温度传感器研发与应用情况,同时介绍了耐高温声表面波无线无源传感器研发进展以及在炼铝电解槽温度监控中的应用.
Surface acoustic wave (SAW) sensors endowed with the unique advantage of truly passive and naturally wireless operating principle attract much attentions in some applications, such as Internet-of-Things, smart grid, smart cities, and so forth. Some research results in SJTU on the fundamental theory of SAW, precise modeling of SAW sensors, design of wireless interrogation system, the sensing information acquisition and signal processing algorithm in the past 20 years have been summarized. The wireless SAW temperature sensor applications in the temperature monitoring of the breaker contacts of a switchgear, the cable joints in ring main units, and the oil temperature and level of power distribution transformers have been presented. Additionally, the wireless SAW sensor withstanding high temperature environment has been developed and applied in temperature monitoring of the high-frequency induction-heated cells in aluminium smelting.
[1]LALJER C E. Joint Chemical Agent Detector (JCAD): The future of chemical agent detection[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2003, 4722: 41-49.
[2]BAO X Q, BURKHARD W, VARADAN V V, et al. SAW temperature sensor and remote reading system[C]//IEEE 1987 Ultrasonics Symposium. IEEE. 1987: 583-586.
[3]POHL A. Review of wireless SAW sensors[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47(2): 317-332.
[4]REINDL L M, SHRENA I M. Wireless measurement of temperature using surface acoustic waves sensors[C]//IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51: 1457-1463.
[5]FRIEDT J M, DROIT C, BALLANDRAS S, et al.Remote vibration measurement: a wireless passive surface acoustic wave resonator fast probing strategy[J]. Review of Scientific Instruments, 2012, 83(5): 055001.
[6]KUYPERS J, REINDL L, TANAKA S, et al. Ma-ximum accuracy evaluation scheme for wireless SAW delay-line sensors[J]. IEEE Transactions on Ultraso-nics, Ferroelectrics, and Frequency Control, 2008, 55(7): 1640-1652.
[7]CUNHA D, MOONLIGHT T, LAD R, et al. High temperature sensing technology for applications up to 1000 ℃[C]//2008 IEEE conference on sensors, 2008: 752-755.
[8]PENG Z. High temperature langasite surface acoustic wave sensors[D]. Carnegie Mellon University, 2011.
[9]TIERSTEN H F. Perturbation theory for linear electroelastic equations for small fields superposed on a bias[J]. Journal of Acoustical Society of America, 1978, 64(3): 832-837.
[10]吉小军. 高温偏载条件下的声表面波压力传感器理论研究[D]. 上海: 上海交通大学, 2004.
JI Xiaojun. Theoretical study on SAW pressure sensor under high temperature and partial load condition[D]. Shanghai: Shanghai Jiao Tong University, 2004.
[11]JI X J, HAN T, SHI W K. Investigation on SAW properties of LGS and optimal cuts for high-temperature applications[J]. IEEE Transactions on Ultraso-nics, Ferroelectrics, and Frequency Control, 2005, 52(11): 2075-2080.
[12]HAN T, JI X J, SHI W K. Optimal pressure-sensitive cuts for surface acoustic waves on langasite[J]. Science in China, 2006, 49(2): 254-261.
[13]KANG A L, LIN J Q, JI X J, et al. A high sensiti-vity pressure sensor based on surface transverse wave[J]. Sensors and Actuators A: Physcis, 2012, 187: 141-146.
[14]JI X J, FAN Y P, CHEN J, et al. Passive wireless torque sensor based on surface transverse wave[J]. IEEE Sensors Journal, 2016, 16(4): 888-894.
[15]ZHANG Q Z, HAN T, TANG G B, et al. SAW characteristics of AlN/SiO2/3C-SiC layered structure with embedded electrodes[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63(10): 1608-1612.
[16]DIXON B, KALININ V. A Second generation in-car tire pressure monitoring system based on wireless passive SAW sensors[C]//2006 IEEE International Frequency Control Symposium and Exposition, 2006: 374-380.
[17]DIOGO S, JOANA C M, ANTNIO B P, et al. Measuring torque and temperature in a rotating shaft using commercial SAW sensors[J]. Sensors, 2017, 17(7): 1547.
[18]SAUVAGE G. Phase noise in oscillators: A mathematical analysis of Leeson’s model[J]. Instrumentation and Measurement, IEEE Transactions on, 1977, 26(4): 408-410.
[19]陈宁, 费元春. 高速数据采集系统中的孔径抖动[J]. 北京理工大学学报, 2003, 23(2): 234-237.
CHEN Ning, FEI Yuanchun. Effects of aperture jitter to the signal noice ration in high speed data acquisition systems[J]. Journal of Beijing Institute of Technology, 2003, 23(2): 234-237.
[20]YAO Y X, PANDIT S M. Cramér-Rao lower bounds for a damped sinusoidal process[J]. Signal Processing, IEEE Transactions on, 1995, 43(4): 878-885.
[21]HAN T, ZHANG C R, HU Y, et al. Recent research results on wireless passive acoustic sensors and their applications[C]//2016 IEEE Ultrasonics Symposium, 2016: 1-5.
[22]LIU B Q, ZHANG C R, JI X J, et al. A performance improved frequency estimation algorithm for passive wireless SAW resonant sensors[J]. Sensors, 2014, 13: 18545-18555.
[23]KALININ V. Comparison of frequency estimators for interrogation of wireless resonant SAW sensors[C]//2015 IEEE International Frequency Control Symposium & the European Frequency and Time Forum, 2015: 498-503.
[24]LIU B Q, HAN T, ZHANG C R. Error correction method for passive and wireless resonant SAW temperature sensor[J]. IEEE Sensors Journal, 2015, 15(6): 3608-3614.
[25]薛明喜, 杨扬, 张晨睿, 等. 基于自适应Kalman滤波的SAW测温数据纠错方法[J]. 仪器仪表学报, 2016, 37(12): 2766-2773.
XUE Mingxi, YANG Yang, ZHANG Chenrui, et al. Error correction method for SAW temperature measurement data based on adaptive Kalman filter[J]. Chinese Journal of Scientific Instrument, 2016, 37(12): 2766-2773.
[26]LIN J M, WANG N, CHEN H, et al. Fast, precise, and full extraction of the COM parameters for multielectrode-type gratings by periodic Green’s function method[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49(12): 1735-1738.