学报(中文)

铝箔板材成形极限试验及数值模拟

展开
  • 上海交通大学 a. 机械与动力工程学院; b. 机械系统与振动国家重点实验室, 上海 200240
陈伟业(1994-),男,湖北省咸宁市人,硕士生,目前主要从事铝合金冲压成形工艺研究.E-mail:CHEN_WEIYE@sjtu.edu.cn.

Aluminum Foil Forming Limitation Test and Numerical Simulation

Expand
  • a. School of Mechanical Engineering; b. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China

摘要

以厚度为0.11mm的8011-H22型铝箔为对象,利用UV打印技术对铝箔试件进行网格附着,采用曲面法开展了铝箔刚模胀形试验,由于试件本身的宽厚比很大且受到摩擦力的作用,使得铝箔在宽度方向的变形极小,所以只获得成形极限图的右半部分(次应变大于0);同时,通过建立铝箔刚模胀形试验过程的有限元模型并结合应变加速度判据,获取成形极限图的左半部分(次应变小于0).结果表明:利用曲面法只能获取铝箔成形极限图的右半部分(次应变大于0);而所建铝箔刚模胀形试验过程的有限元模型能够获得成形极限图的左半部分(次应变小于0).

本文引用格式

陈伟业a,邹天下a,唐鼎a,郭飞鹏a,李大永a, b . 铝箔板材成形极限试验及数值模拟[J]. 上海交通大学学报, 2018 , 52(9) : 1081 -1085 . DOI: 10.16183/j.cnki.jsjtu.2018.09.011

Abstract

Thinner aluminum foil brings bigger challenge to its forming performance, so in this paper, no-damage UV printing technology was applied to marking grid in specimens, and an FLD test for 0.11 mm 8011-H22 aluminum foils was successfully launched. Because aluminum foil deformed very little in the width direction under the big width-thickness ratio and the effect of friction, only the right part of FLD could be obtained. Then the finite element simulation of rigid model bulging test was established, and the left part of FLD could be further completed based on the “strain acceleration” failure criteria. A complete FLD was then finally established.

参考文献

[1]闵敬春, 陶涛, 彭晓峰. 椭圆管直翅换热器翅片效率的计算[J]. 工程热物理学报, 2001, 22(4): 473-476. MIN Jingchun, TAO Tao, PENG Xiaofeng. Calculation of fin efficiency of an oval finned tube heat exchanger[J]. Journal of Engineering Thermophysics, 2001, 22(4): 473-476. [2]熊盛勇, 夏琴香, 陈亚兵, 等. 基于数值模拟的空调换热器翅片多道次级进拉深成形过程研究[J]. 锻压技术, 2015, 40(1): 27-32. XIONG Shengyong, XIA Qinxiang, CHEN Yabing, et al. Research on multi-step progressive drawing of conditioner heat exchanger fin based on numerical simulation[J]. Forming & Stamping Technology, 2015, 40(1): 27-32. [3]BRNING H, VOLLERTSEN F. Mechanical flange forming in steel and copper foil[J]. Production Engineering, 2012, 6(6): 551-558. [4]王银芝. 圆孔翻边成形工艺的计算机模拟研究[J]. 热加工工艺, 2012, 41(23): 97-100. WANG Yinzhi. Computer simulation of hole-flanging forming process[J]. Hot Working Technology, 2012, 41(23): 97-100. [5]KEELER S P. Understanding sheet metal formability[J]. Machinery, 1968, 33: 33-36. [6]MAHMUDI R. Forming limits in biaxial stretching of aluminum sheets and foils[J]. Journal of Materials Processing Technology, 1993, 37(1/2/3/4): 203-216. [7]吴杰锋, 陈炜, 张玲, 等. 不锈钢超薄板的力学性能及成形极限研究[J]. 热加工工艺, 2016, 45(1): 127-130. WU Jiefeng, CHEN Wei, ZHANG Ling, et al. Study on mechanical property and forming limit of 304 stainless steel[J]. Hot Working Technology, 2016, 45(1): 127-130. [8]宋晓明, 高珊珊. UV喷墨印刷技术[J]. 出版与印刷, 2009(3): 40-41. SONG Xiaoming, GAO Shanshan. UV inkjet printing technology[J]. Publishing & Printing, 2009(3): 40-41 [9]吴斌, 单云. AA5182-O铝合金成形极限确立研究[J]. 锻压技术, 2016, 41(3): 29-33. WU Bin, SHAN Yun. Study on the establishment of forming limit curve of aluminum alloy AA5182-O[J]. Forming & Stamping Technology, 2016, 41(3): 29-33. [10]HILL R. A theory of the yielding and plastic flow of anisotropic metals [EB/OL]. [2017-04-20]. http:∥rspa.royalsocietypublishing.org/content/royprsa/193/1033/281.full.pdf. [11]ZHOU G, ANANTHAESWARA K, MITUKIEWICZ G, et al. FE simulations of gas blow forming and prediction of forming limit diagram of AZ31 magnesium sheet[J]. Journal of Materials Processing Technology, 2015, 218: 12-22. [12]SITU Q, JAIN M K, METZGER D R. Determination of forming limit diagrams of sheet materials with a hybrid experimental-numerical approach[J]. International Journal of Mechanical Sciences, 2011, 53(9): 707-719.
Options
文章导航

/