椭圆余弦波作用下海床的响应

展开
  • 上海交通大学土木工程系,上海  200240
徐云峰(1978-),男,湖北省天门市人,博士生,研究方向:海洋岩土工程数值分析.|王建华(联系人),男,教授,博士生导师,电话(Tel.): 021-34207002; E-mail:wjh417@sjtu.edu.cn.

收稿日期: 2012-10-16

  网络出版日期: 2013-10-30

基金资助

国家自然科学基金项目(41076053)

Response of Seabed to Cnoidal Waves

Expand
  • Department of Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, Chian

Received date: 2012-10-16

  Online published: 2013-10-30

摘要

根据椭圆余弦波理论,计算了在滨浅海区域波浪作用下海床表面的波压力.通过参数分析,研究了海床弹性参数、渗透性以及孔隙水的压缩性对椭圆余弦波作用下海床孔压响应的影响.研究表明:孔隙水的压缩性、海床的渗透性、剪切模量、泊松比对海床的孔压响应有明显的影响,海床的渗透各向异性对孔压响应影响较小.

本文引用格式

徐云峰, 夏小和, 王建华, 陈锦剑 . 椭圆余弦波作用下海床的响应[J]. 上海交通大学学报, 2013 , 47(10) : 1580 -1584 . DOI: 10.16183/j.cnki.jsjtu.2013.10.017

Abstract

The water pressure on the surface of the seabed was obtained with the cnoidal wave theory usually employed in coastal regions to analyze the interaction between the structures and waves. Dynamic responses induced by the cnoidal water waves in seabed sediments were investigated with numerical methods. Parametric studies were conducted to indicate the influences of the elastic constants, seepage characteristics and the compressibility of the pore water in analytical and numerical calculations. The results show that the excess pore pressures are extensively affected by the compressibility of the pore water and the seepage coefficient, whereas the anisotropy of the soil permeability has little impact on the pore pressure. The shear modulus and the Poisson's ratio used in the calculation also have some effect on the response of the seabed.

参考文献

[1] Yamamoto T. Wave-induced pore pressures and effective stresses in inhomogeneous seabed foundations[J]. Ocean Engineering, 1978, 8(1): 1-16.
[2] Madsen O S. Wave-induced pore pressures and effective stresses in a porous bed[J]. Geotechnique, 1978, 28(4): 377-393.
[3] Zhang Y L, Li J. Analytical solution for wave induced response of isotropic poro-elastic seabed[J]. Science China Technological Sciences, 2010, 53(10): 2619-2629.
[4] Sawicki A, Staroszczyk R. Wave-induced stresses and pore pressures near a mudline[J]. Oceanologia, 2008, 50(4): 539-555.
[5] Wang J G, Zhang B, Nogami T. Wave-induced seabed response analysis by radial point interpolation meshless method[J]. Ocean Engineering, 2004, 31(1): 21-42.
[6] Wang J G, Karim M R, Lin P Z. Analysis of seabed instability using element free Galerkin method[J]. Ocean Engineering, 2007, 34(2): 247-260.
[7] Cheng Y Z, Jiang C B, Wang Y Y, A coupled numerical model of wave interaction with porous medium[J]. Ocean Engineering, 2009, 36(12): 952-959.
[8] Cho Y S. A note on estimation of the Jacobian elliptic parameter in cnoidal wave theory[J]. Ocean Engineering, 2003, 30(15): 1915-1922.
[9] Xu Y F, Xia X H, Wang J H. Calculation and approximation of the cnoidal function in cnoidal wave theory[J]. Computers & Fluids, 2012, 68: 244-247.
[10] Mei C C, Stiassnie M, Yue D K P. Theory and applications of ocean surface waves. Part 2: Nonlinear aspects [M]. London: World Scientific, 2005.
文章导航

/