波浪-流作用下分层海床稳定性分析

展开
  • 上海交通大学船舶海洋与建筑工程学院,上海  200240
文锋(1983-),男,安徽省金寨县人,博士生,从事海洋岩土方面的研究.E-mail: wenfeng@sjtu.edu.cn.|王建华(联系人),教授,博士生导师,E-mail: wjh417@sjtu.edu.cn.

收稿日期: 2013-10-10

  网络出版日期: 2014-06-30

基金资助

国家自然科学基金资助项目(41330633)

Stability Analysis of Layered Seabed Under Wave and Current Loading

Expand
  • School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China

Received date: 2013-10-10

  Online published: 2014-06-30

摘要

基于Biot固结理论,结合波流相互作用理论,采用数值模型分析了分层海床在波浪-流共同作用下的响应,尤其是分层海床的液化可能性及剪切破坏深度.结果表明,顺流的存在不仅会增加液化风险,还会使剪切破坏深度增加,而采用高渗透性土作为覆盖层不仅能有效降低原海床液化风险,且能减小甚至避免原海床的剪切破坏,可用于海床保护.

本文引用格式

文锋, 王建华 . 波浪-流作用下分层海床稳定性分析[J]. 上海交通大学学报, 2014 , 48(06) : 793 -797,803 . DOI: 10.16183/j.cnki.jsjtu.2014.06.011

Abstract

The stability of layered seabed subjected to combined wave and current loading was studied by numerical model based on Biot's consolidation theory. The numerical results reveal that the existence of following current not only aggravates the possibility of liquefaction, but also increases the depth of shear failure. As a treatment, higher permeable soils layered upon seabed composed of low permeable soil will decrease the potential possibility of liquefaction as well as help to prevent original seabed from shear failure.

参考文献

[1] Yamamoto T, Koning H L, Sellmeijer H, et al. On the response of a poro-elastic bed to water waves[J]. Journal of Fluid Mechanics, 1978, 87(1): 193-206.
[2] 张永利, 李杰. 波浪作用下海床响应的解析解[J]. 中国科学: 技术科学, 2010, 40(12): 1398-1408.
[2] ZHANG Yong-li, LI Jie. Analytical solution for wave-induced response of isotropic poro-elastic seabed[J]. Science China: Technology Science, 2010, 40(12): 1398-1408.
[3] 刘红军, 王虎, 张民生, 等. 波浪作用下黄河三角洲粉质土海床动力响应分析[J]. 岩土力学, 2013, 34(7): 2065-2071.
[3] LIU Hong-jun, WANG Hu, ZHANG Min-sheng, et al. Analysis of wave-induced dynamic response of silty seabed in Yellow River delta[J]. Rock and Soil Mechanics, 2013, 34(7): 2065-2071.
[4] 常方强, 贾永刚. 黄河口粉质土海床液化过程的现场试验研究[J]. 土木工程学报, 2012, 45(1): 121-126.
[4] CHANG Fang-qiang, JIA Yong-gang. In-situ test to study silt liquefaction at the subaqueous delta of Yellow River[J]. China Civil Engineering Journal, 2012, 45(1): 121-126.
[5] Hsu J R C, Jeng D S, Lee C P. Oscillatory soil response and liquefaction in an unsaturated layered seabed[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(12): 825-849.
[6] 周香莲, 王建华, 李耀良, 等. 波浪作用下层状海床孔隙水压力响应的计算方法[J]. 岩土工程学报, 2010, 32(S2): 21-24.
[6] ZHOU Xiang-lian, WANG Jian-hua, LI Yao-liang, et al. Analysis method for pore pressure in a multi-layered seabed under wave loading[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 21-24.
[7] 郭秀军, 朱大伟, 孟庆生, 等. 波浪作用下黄河口多层粉质土海床动力响应特征差异性分析[J]. 岩土工程学报, 2012, 34(12): 2270-2276.
[7] GUO Xiu-jun, ZHU Da-wei, MENG Qing-sheng, et al. Differences in dynamic response characteristics of multi-layer silty seabed under waves in Yellow River Estuary[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 227-2276.
[8] 赵刚. 胜利作业三号平台“9·7”倾斜事故分析[J]. 现代职业安全, 2011, 119(7): 100-102.
[8] ZHAO Gang. The analysis of failure of Shengli No. 3 offshore platform in Bohai sea[J]. Modern Occupational Safety, 2011, 119(7): 100-102.
[9] Ye J H, Jeng D S. Response of porous seabed to nature loading: Waves and currents[J]. Journal of Engineering Mechanics, 2012, 138: 601-613.
[10] 崔嵩, 郑东生, 叶冠林, 等. 波流共同作用下砂质海床动力响应[J]. 上海交通大学学报, 2012, 46(10): 1553-1557.
[10] CUI Song, ZHENG Dong-sheng, YE Guan-lin, et al. Dynamic response of the sandy seabed to combined wave and current loading[J]. Journal of Shanghai Jiaotong University, 2012, 46(10): 1553-1557.
[11] Hsu H C, Chen Y Y, Hsu J R C, et al. Nonlinear water waves on uniform current in lagrangian coordinates[J]. Journal of Nonlinear Mathematical Physics, 2009, 16(1): 47-61.
[12] Hsu J R C, Jeng D S. Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(11): 785-807.
文章导航

/