上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (11): 1753-1761.doi: 10.16183/j.cnki.jsjtu.2024.187

• 制导、导航与控制 • 上一篇    下一篇

风扰下无人机栖落机动的强化学习控制设计

张威振, 何真(), 汤张帆   

  1. 南京航空航天大学 自动化学院,南京 211106
  • 收稿日期:2024-05-24 修回日期:2024-06-12 接受日期:2024-06-19 出版日期:2024-11-28 发布日期:2024-12-02
  • 通讯作者: 何 真,副教授;E-mail:hezhen@nuaa.edu.cn.
  • 作者简介:张威振(1998—),硕士生,从事飞行控制研究.
  • 基金资助:
    国家自然科学基金(61873126)

Reinforcement Learning Control Design for Perching Maneuver of Unmanned Aerial Vehicles with Wind Disturbances

ZHANG Weizhen, HE Zhen(), TANG Zhangfan   

  1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Received:2024-05-24 Revised:2024-06-12 Accepted:2024-06-19 Online:2024-11-28 Published:2024-12-02

摘要:

针对无人机在风扰环境下的栖落机动过程,利用含控制的非线性动力学稀疏辨识(SINDYc)方法与模仿深度强化学习(IDRL)方法设计栖落机动的控制策略.首先,采用域随机化方法建立具有多种风况的栖落机动系统训练环境.然后,基于历史数据和候选函数库,采用SINDYc方法离线学习各个风况下栖落机动系统的稀疏模型,以有效辨识风况信息.接着,在具有多种风况的栖落机动系统训练环境中,采用IDRL算法进行栖落机动控制策略的训练,得到风扰下的栖落机动控制策略.最后,通过数值仿真验证了所设计的栖落机动控制策略在风扰环境下的有效性.

关键词: 风扰, 栖落机动, 飞行控制, 稀疏辨识, 模仿深度强化学习

Abstract:

This paper addresses the issue of perching maneuver of unmanned aerial vehicles in wind-disturbed environments, by combining the control-oriented sparse identification of nonlinear dynamics with control (SINDYc) method and the imitation deep reinforcement learning (IDRL) control strategy. The study focuses on the design of control strategies for perching maneuvers. First, a training environment for the perching system is established using domain randomization, which incorporates various wind conditions. Then, the SINDYc method is employed to learn sparse models of the perching system offline under different wind conditions, using historical data and a candidate function library, to effectively identify the wind information. Afterwards, the perching control strategy is trained using an IDRL algorithm within the training environment that encompasses multiple wind conditions, resulting in a control strategy for perching in wind-disturbed scenarios. Finally, numerical simulations are conducted to verify the effectiveness of the proposed perching control strategy in wind-disturbed environments.

Key words: wind disturbance, perching maneuver, flight control, sparse identification of nonlinear dynamics with control (SINDYc), imitation deep reinforcement learning (IDRL)

中图分类号: