上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (6): 780-788.doi: 10.16183/j.cnki.jsjtu.2023.388
计蓉a, 侯慧娟b(), 盛戈皞b, 张立静b, 舒博b, 江秀臣b
收稿日期:
2023-08-11
接受日期:
2024-01-15
出版日期:
2025-06-28
发布日期:
2025-07-04
通讯作者:
侯慧娟
E-mail:houhuijuan@sjtu.edu.cn
作者简介:
计 蓉(1999—),硕士生,从事电力设备状态数据质量评估及质量提升研究.
基金资助:
JI Ronga, HOU Huijuanb(), SHENG Gehaob, ZHANG Lijingb, SHU Bob, JIANG Xiuchenb
Received:
2023-08-11
Accepted:
2024-01-15
Online:
2025-06-28
Published:
2025-07-04
Contact:
HOU Huijuan
E-mail:houhuijuan@sjtu.edu.cn
摘要:
当下电力设备状态大数据呈现爆炸式增长,设备故障、数据传输以及人为操作失误等原因都会导致问题数据的出现,影响数据质量以及后续分析结果,因此数据清洗具有重要意义.目前大多数研究着力于识别异常数据并直接剔除,破坏了数据的完整性.针对此问题,提出一种基于改进堆叠降噪自编码器的数据清洗方法.首先,采用粒子群算法优化堆叠降噪自编码器中的超参数;然后,利用堆叠降噪自编码器提取、还原数据特征的特点来进行数据清洗,实现对孤立点的修复和对空缺数据的填补,以有效提升电力设备状态数据的质量.所提方法简单高效,可以同时提高数据集的准确性和完整性.以电力设备的历史运行数据为例进行测试,算例结果表明所提方法相比于其他经典方法,数据清洗效果更好,且针对不同异常程度和运行状态的数据集都有良好的清洗效果,能够提高电力设备状态数据的质量.
中图分类号:
计蓉, 侯慧娟, 盛戈皞, 张立静, 舒博, 江秀臣. 基于粒子群优化堆叠降噪自编码器的电力设备状态数据质量提升[J]. 上海交通大学学报, 2025, 59(6): 780-788.
JI Rong, HOU Huijuan, SHENG Gehao, ZHANG Lijing, SHU Bo, JIANG Xiuchen. Data Quality Improvement Method for Power Equipment Condition Based on Stacked Denoising Autoencoders Improved by Particle Swarm Optimization[J]. Journal of Shanghai Jiao Tong University, 2025, 59(6): 780-788.
表1
不同方法对异常数据的修复结果
时间 点 | 温度/℃ | eerror/% | ||||
---|---|---|---|---|---|---|
原始值 | BP | PSO-SVM | SDAE | PSO-SDAE | ||
6 | 52.700 | 45.702 | 48.431 | 54.043 | 53.265 | 1.07 |
17 | 52.512 | 45.702 | 58.470 | 53.964 | 53.813 | 2.48 |
24 | 56.676 | 61.560 | 60.217 | 59.378 | 59.362 | 4.74 |
33 | 58.665 | 61.560 | 60.736 | 59.378 | 59.365 | 1.19 |
41 | 54.534 | 45.702 | 48.194 | 53.963 | 53.813 | 1.32 |
42 | 53.253 | 45.702 | 48.193 | 53.963 | 53.813 | 1.05 |
54 | 53.160 | 45.702 | 57.311 | 53.963 | 53.235 | 0.14 |
66 | 58.421 | 61.553 | 60.602 | 53.963 | 59.353 | 1.60 |
80 | 49.070 | 61.560 | 58.633 | 59.378 | 51.362 | 4.67 |
90 | 56.073 | 45.702 | 58.469 | 53.963 | 53.813 | 4.03 |
表3
不同异常数据集的数据清洗效果评价
方法 | 异常率5% | 异常率10% | 异常率20% | 异常率30% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
eRMSE | eMPAE/% | eRMSE | eMPAE/% | eRMSE | eMPAE/% | eRMSE | eMPAE/% | ||||
BP | 51.232 | 1.6295 | 72.677 | 3.5770 | 107.891 | 7.096 | 140.287 | 11.147 | |||
PSO-SVM | 42.045 | 1.3640 | 70.409 | 3.6560 | 96.124 | 6.135 | 125.314 | 7.762 | |||
SDAE | 38.429 | 3.3078 | 54.596 | 5.2928 | 80.977 | 7.043 | 73.823 | 5.231 | |||
PSO-SDAE | 35.731 | 1.2963 | 53.246 | 2.7180 | 77.272 | 4.679 | 72.181 | 4.806 |
[1] | 江秀臣, 盛戈皞. 电力设备状态大数据分析的研究和应用[J]. 高电压技术, 2018, 44(4): 1041-1050. |
JIANG Xiuchen, SHENG Gehao. Research and application of big data analysis of power equipment condition[J]. High Voltage Engineering, 2018, 44(4): 1041-1050. | |
[2] | 陈敬德, 盛戈皞, 吴继健, 等. 大数据技术在智能电网中的应用现状及展望[J]. 高压电器, 2018, 54(1): 35-43. |
CHEN Jingde, SHENG Gehao, WU Jijian, et al. Application status and prospect of big data technology in smart grid[J]. High Voltage Apparatus, 2018, 54(1): 35-43. | |
[3] | 方静, 彭小圣, 刘泰蔚, 等. 电力设备状态监测大数据发展综述[J]. 电力系统保护与控制, 2020, 48(23): 176-186. |
FANG Jing, PENG Xiaosheng, LIU Taiwei, et al. Development trend and application prospects of big data-based condition monitoring of power apparatus[J]. Power System Protection & Control, 2020, 48(23): 176-186. | |
[4] | 李刚, 张博, 赵文清, 等. 电力设备状态评估中的数据科学问题: 挑战与展望[J]. 电力系统自动化, 2018, 42(21): 10-20. |
LI Gang, ZHANG Bo, ZHAO Wenqing, et al. Data science issues in state evaluation of power equipment: Challenges and prospects[J]. Automation of Electric Power Systems, 2018, 42(21): 10-20. | |
[5] | 王军, 李建勋, 韩山, 等. 一种效能评估中缺失数据的填充方法[J]. 上海交通大学学报, 2017, 51(2): 180-185. |
WANG Jun, LI Jianxun, HAN Shan, et al. A missing data filling method for effectiveness evaluation system[J]. Journal of Shanghai Jiao Tong University, 2017, 51(2): 180-185. | |
[6] | 周远翔, 林孟龙, 陈健宁, 等. 基于自注意力生成对抗网络的电力设备在线监测缺失数据填补[J]. 高电压技术, 2023, 49(5): 1795-1809. |
ZHOU Yuanxiang, LIN Menglong, CHEN Jianning, et al. Missing data imputation for online monitoring of power equipment based on self-attention generative adversarial networks[J]. High Voltage Engineering, 2023, 49(5): 1795-1809. | |
[7] |
吴金娥, 王若愚, 段倩倩, 等. 基于反向k近邻过滤异常的群数据异常检测[J]. 上海交通大学学报, 2021, 55(5): 598-606.
doi: 10.16183/j.cnki.jsjtu.2020.011 |
WU Jin’e, WANG Ruoyu, DUAN Qianqian, et al. Collective data anomaly detection based on reverse k-nearest neighbor filtering[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 598-606. | |
[8] | 李富盛, 陈伟松, 钱斌, 等. 面向低压配电网智能电表误差监测的LightGBM-EM-EC多变量缺失数据高效重建[J]. 中国电机工程学报, 2022, (42 Sup.1): 95-105. |
LI Fusheng, CHEN Weisong, QIAN Bin, et al. Efficient reconstruction of multivariate missing data for smart meter error monitoring in low voltage distribution network based on LightGBM-EM-EC[J]. Proceedings of the CSEE. 2022, (Sup.1): 95-105. | |
[9] | 杨茂, 张书天, 王天硕, 等. 基于IKLIEP-四分位模型的风电场异常数据识别算法[J]. 高电压技术, 2023, 49(7): 2952-2960. |
YANG Mao, ZHANG Shutian, WANG Tianshuo, et al. Identification algorithm of wind farm abnormal data based on IKLIEP-quartile model[J]. High Voltage Engineering, 2023, 49(7): 2952-2960. | |
[10] | 王文森, 杨晓西, 刘阳, 等. 基于层次聚类分析的变压器油中溶解气体在线监测数据异常检测[J]. 高压电器, 2023, 59(1): 142-147. |
WANG Wensen, YANG Xiaoxi, LIU Yang, et al. Anomaly detection of online monitoring data of dissolved gases in transformer oil based on hierarchical cluster analysis[J]. High Voltage Apparatus, 2023, 59(1): 142-147. | |
[11] | 杨挺, 孙兆帅, 季浩, 等. 基于矩阵范数优化理论的用电数据质量提升算法[J]. 中国电机工程学报, 2022, 42(10): 3501-3511. |
YANG Ting, SUN Zhaoshuai, JI Hao, et al. Electricity consumption data quality improvement algorithm based on matrix norm optimization theory[J]. Proceedings of the CSEE, 2022, 42(10): 3501-3511. | |
[12] | 娄建楼, 胥佳, 陆恒, 等. 基于功率曲线的风电机组数据清洗算法[J]. 电力系统自动化, 2016, 40(10): 116-121. |
LOU Jianlou, XU Jia, LU Heng, et al. Wind turbine data-cleaning algorithm based on power curve[J]. Automation of Electric Power Systems, 2016, 40(10): 116-121. | |
[13] | 林峻, 严英杰, 盛戈皞, 等. 考虑时间序列关联的变压器在线监测数据清洗[J]. 电网技术, 2017, 41(11): 3733-3740. |
LIN Jun, YAN Yingjie, SHENG Gehao, et al. Online monitoring data cleaning of transformer considering time series correlation[J]. Power System Technology, 2017, 41(11): 3733-3740. | |
[14] | 朱有产, 梁玮轩, 王英姿. 基于时间序列的配电网数据清理和融合方法研究[J]. 电网技术, 2021, 45(7): 2839-2846. |
ZHU Youchan, LIANG Weixuan, WANG Yingzi. Research on data cleaning and fusion in distribution power grid based on time series technology[J]. Power System Technology, 2021, 45(7): 2839-2846. | |
[15] | REN C, XU Y. A fully data-driven method based on generative adversarial networks for power system dynamic security assessment with missing data[J]. IEEE Transactions on Power Systems, 2019, 34(6): 5044-5052. |
[16] | 王守相, 陈海文, 潘志新, 等. 采用改进生成式对抗网络的电力系统量测缺失数据重建方法[J]. 中国电机工程学报, 2019, 39(1): 56-64. |
WANG Shouxiang, CHEN Haiwen, PAN Zhixin, et al. A reconstruction method for missing data in power system measurement using an improved generative adversarial network[J]. Proceedings of the CSEE, 2019, 39(1): 56-64. | |
[17] | 代杰杰, 宋辉, 杨祎, 等. 基于栈式降噪自编码器的输变电设备状态数据清洗方法[J]. 电力系统自动化, 2017, 41(12): 224-230. |
DAI Jiejie, SONG Hui, YANG Yi, et al. Cleaning method for status data of power transmission and transformation equipment based on stacked denoising autoencoders[J]. Automation of Electric Power Systems, 2017, 41(12): 224-230. | |
[18] | SHIN H C, ORTON M R, COLLINS D J, et al. Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(8): 1930-1943. |
[19] | HONG C Q, YU J, WAN J, et al. Multimodal deep autoencoder for human pose recovery[J]. IEEE Transactions on Image Processing: A publication of the IEEE Signal Processing Society, 2015, 24(12): 5659-5670. |
[20] | VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]// Proceedings of the 25th international conference on Machine learning. Helsinki, Finland: ACM, 2008: 1096-1103. |
[21] | VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11: 3371-3408. |
[22] | 李兵, 梁舒奇, 单万宁, 等. 基于改进正余弦算法优化堆叠降噪自动编码器的电机轴承故障诊断[J]. 电工技术学报, 2022, 37(16): 4084-4093. |
LI Bing, LIANG Shuqi, SHAN Wanning, et al. Motor bearing fault diagnosis based on improved sine and cosine algorithm for stacked denoising autoencoders[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4084-4093. | |
[23] | 招景明, 唐捷, 潘峰, 等. 基于SDAE和双模型联合训练的低压用户窃电检测方法[J]. 电测与仪表, 2021, 58(12): 161-168. |
ZHAO Jingming, TANG Jie, PAN Feng, et al. Detection method of electricity theft for low-voltage users based on SDAE and double-model joint training[J]. Electrical Measurement & Instrumentation, 2021, 58(12): 161-168. | |
[24] | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of ICNN’95-International Conference on Neural Networks, Perth, Australia: IEEE, 1995: 1942-1948. |
[25] | 王立文, 刘建华, 陈斌, 等. 基于改进的PSO优化SVR的机场道面积冰预测[J]. 计算机仿真, 2021, 38(9): 45-50. |
WANG Liwen, LIU Jianhua, CHEN Bin, et al. Prediction of airport road surface icing based on improved PSO optimized SVR[J]. Computer Simulation, 2021, 38(9): 45-50. | |
[26] | DU B G, HUANG S, GUO J, et al. Interval forecasting for urban water demand using PSO optimized KDE distribution and LSTM neural networks[J]. Applied Soft Computing, 2022, 122: 108875. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||