上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (6): 780-788.doi: 10.16183/j.cnki.jsjtu.2023.388

• 新型电力系统与综合能源 • 上一篇    下一篇

基于粒子群优化堆叠降噪自编码器的电力设备状态数据质量提升

计蓉a, 侯慧娟b(), 盛戈皞b, 张立静b, 舒博b, 江秀臣b   

  1. 上海交通大学 a. 国家电投智慧能源创新学院; b. 电气工程系, 上海 200240
  • 收稿日期:2023-08-11 接受日期:2024-01-15 出版日期:2025-06-28 发布日期:2025-07-04
  • 通讯作者: 侯慧娟 E-mail:houhuijuan@sjtu.edu.cn
  • 作者简介:计 蓉(1999—),硕士生,从事电力设备状态数据质量评估及质量提升研究.
  • 基金资助:
    国家电网有限公司总部科技项目(5216A021003V)

Data Quality Improvement Method for Power Equipment Condition Based on Stacked Denoising Autoencoders Improved by Particle Swarm Optimization

JI Ronga, HOU Huijuanb(), SHENG Gehaob, ZHANG Lijingb, SHU Bob, JIANG Xiuchenb   

  1. a. College of Smart Energy; b. Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2023-08-11 Accepted:2024-01-15 Online:2025-06-28 Published:2025-07-04
  • Contact: HOU Huijuan E-mail:houhuijuan@sjtu.edu.cn

摘要:

当下电力设备状态大数据呈现爆炸式增长,设备故障、数据传输以及人为操作失误等原因都会导致问题数据的出现,影响数据质量以及后续分析结果,因此数据清洗具有重要意义.目前大多数研究着力于识别异常数据并直接剔除,破坏了数据的完整性.针对此问题,提出一种基于改进堆叠降噪自编码器的数据清洗方法.首先,采用粒子群算法优化堆叠降噪自编码器中的超参数;然后,利用堆叠降噪自编码器提取、还原数据特征的特点来进行数据清洗,实现对孤立点的修复和对空缺数据的填补,以有效提升电力设备状态数据的质量.所提方法简单高效,可以同时提高数据集的准确性和完整性.以电力设备的历史运行数据为例进行测试,算例结果表明所提方法相比于其他经典方法,数据清洗效果更好,且针对不同异常程度和运行状态的数据集都有良好的清洗效果,能够提高电力设备状态数据的质量.

关键词: 电力设备, 状态数据, 堆叠降噪自编码器, 数据清洗

Abstract:

Big data related to power equipment condition is experiencing explosive growth. However, equipment failures and personnel errors result in dirty data, having a negative effect on data quality and subsequent analysis results. Therefore, data cleaning is of great significance. Most existing research focuses on direct identification and elimination of abnormal data, which compromises the integrity of the data. In order to solve this problem, a data cleaning method based on improved stack noise reduction autoencoder is proposed in this paper. First, particle swarm optimization is used to optimize the hyperparameters of the stack noise reduction autoencoder. Then, the characteristics of the autoencoder is used to extract and restore the data features to clean the data. The method improves data quality of power equipment condition by repairing isolated data points and filling in missing data, which is simple and efficient for improving the accuracy and integrity of the data set. Finally, the historical operation data of power equipment is taken as an example. The simulation results show that the proposed method outperforms other classical methods providing good cleaning results for data sets with different abnormal degrees in different running states. The proposed method offers an effective solution for improving the quality of power equipment status data effectively.

Key words: power equipment, status data, stacked denoising autoencoder, data cleaning

中图分类号: