上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (2): 221-229.doi: 10.16183/j.cnki.jsjtu.2023.312

• 新型电力系统与综合能源 • 上一篇    下一篇

基于功率预测精度提升和市场交易的平抑新能源出力波动策略

梁以恒1,2, 杨冬梅1,2, 刘刚1,2, 叶闻杰1,2, 杨翼泽1,2, 钱涛3, 胡秦然3()   

  1. 1.南瑞集团有限公司(国网电力科学研究院有限公司),南京 211100
    2.国电南瑞科技股份有限公司, 南京 211100
    3.东南大学 电气工程学院,南京 210096
  • 收稿日期:2023-07-12 修回日期:2023-09-18 接受日期:2023-09-19 出版日期:2025-02-28 发布日期:2025-03-11
  • 通讯作者: 胡秦然,教授,博士生导师;E-mail:qhu@seu.edu.cn.
  • 作者简介:梁以恒(1997—),硕士,从事新能源功率预测研究.
  • 基金资助:
    2022年度江苏省碳达峰碳中和科技创新专项资金(产业前瞻与关键核心技术攻关)重点项目(BE2022003)

A Strategy for Smoothing Power Fluctuations of New Energy Based on Improved Power Prediction Accuracy and Market Transaction

LIANG Yiheng1,2, YANG Dongmei1,2, LIU Gang1,2, YE Wenjie1,2, YANG Yize1,2, QIAN Tao3, HU Qinran3()   

  1. 1. NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211100, China
    2. NARI Technology Co., Ltd., Nanjing 211100, China
    3. School of Electrical Engineering, Southeast University, Nanjing 210096, China
  • Received:2023-07-12 Revised:2023-09-18 Accepted:2023-09-19 Online:2025-02-28 Published:2025-03-11

摘要:

新能源的不确定性导致功率预测误差,造成新能源发电商因投标电量存在偏差而产生弃风损失和偏差惩罚.提出基于特征约束的多层感知机(MLP)功率预测算法结合储能双边交易提供电量支撑,降低投标偏差.首先,通过改进网络结构和自适应学习提高MLP隐含层关联度,加强对输入数据非线性规则的表征能力,提高功率预测精度.其次,提出新能源发电商与储能商在进入日前市场之前进行双边交易的模式,进一步降低因功率预测误差引起的偏差惩罚和弃风损失.最后,算例证明基于特征约束的MLP有效提高新能源功率预测精度,并且通过与储能商双边交易,有效提高新能源发电商的总体收益.

关键词: 新能源功率预测, 基于特征约束的多层感知机, 双边交易

Abstract:

The uncertainty of new energy results in power prediction errors, causing new energy producers to bear high wind curtailment losses and deviation penalties due to bidding deviations. To address these issues, this paper proposes a feature-constrained multi-layer perception (MLP) power prediction algorithm, combined with storage-based bilateral transactions, to provide power support and reduce bidding deviations. First, the MLP model is enhanced by improving the relevancy of the hidden layers through adaptive learning, which strengthens its ability to capture nonlinear rules in input data and improves power prediction accuracy. Then, the algorithm allows for bilateral transactions between new energy producers and storage enterprise before entering the day-ahead market, helping mitigate the penalties associated with prediction errors including deviation and curtailment costs. Finally, the case study demonstrates that the feature-constrained MLP effectively improves the power prediction accuracy. Additionally, engaging in bilateral transactions with storage enterprise significantly reduces the costs incurred by new energy producers due to bid deviations.

Key words: new energy power prediction, feature-constrained multi-layer perception (MLP), bilateral transaction

中图分类号: