上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (3): 293-302.doi: 10.16183/j.cnki.jsjtu.2023.309
• 新型电力系统与综合能源 • 下一篇
收稿日期:
2023-07-10
修回日期:
2023-09-05
接受日期:
2023-09-08
出版日期:
2025-03-28
发布日期:
2025-04-02
通讯作者:
张显涛,副教授,博士生导师,电话(Tel.): 021-34207238; E-mail: zhxt@sjtu.edu.cn.
作者简介:
李 扬(1989—),博士生,现主要从事海洋波浪能装备研究.
基金资助:
LI Yang, ZHANG Xiantao(), XIAO Longfei
Received:
2023-07-10
Revised:
2023-09-05
Accepted:
2023-09-08
Online:
2025-03-28
Published:
2025-04-02
摘要:
自适应双稳态浮子式波浪能发电装置虽然解决了双稳态系统在入射波的振幅较小时可能难以跨越势垒的问题,但其效率仍有提升空间.既往研究已证实装置参数改变会对装置性能造成较大影响,而且最优装置参数均与此时的谱峰频率有较大关联.因此,对装置进行控制研究时,在假定一段时间内谱峰频率可预测的前提下设计控制方案,相应调节装置参数可实现提高效率的目的.选取3个控制参数,通过仿真计算确定不同谱峰频率下最优装置参数库;然后,在仿真计算程序中加入控制模块,利用插值法对参数进行控制.结果表明:施加可变参数控制的装置可获得更好的能量捕获效率.
中图分类号:
李扬, 张显涛, 肖龙飞. 自适应双稳态浮子式波浪能发电装置在不规则波中的参数控制[J]. 上海交通大学学报, 2025, 59(3): 293-302.
LI Yang, ZHANG Xiantao, XIAO Longfei. Parameter Control of Adaptive Bistable Point Absorber Wave Energy Converter in Irregular Waves[J]. Journal of Shanghai Jiao Tong University, 2025, 59(3): 293-302.
[1] | 刘中民. “碳达峰”与“碳中和”——绿色发展的必由之路[N]. 人民日报,2021-08-13(20). |
LIU Zhongmin. “Carbon peaking” and “carbon neutrality”—The only way for green development[N]. People’s Daily, 2021-08-13(20). | |
[2] | International Energy Agency (IEA). Renewable energy market update outlook for 2022 and 2023[EB/OL]. (2022-05-01)[2023-07-10]. https://www.iea.org/reports/renewable-energy-market-update-may-2022. |
[3] | PEI F, LIN Y. Numerical study of wave energy converter platform geometry layout design[J]. Journal of Shanghai Jiao Tong University (Science), 2024, 29(5): 780-790. |
[4] | ZHANG X T, ZHANG H C, ZHOU X, et al. Recent advances in wave energy converters based on nonlinear stiffness mechanisms[J]. Applied Mathematics & Mechanics, 2022, 43(7): 1081-1108. |
[5] | SHENG W N. Wave energy conversion and hydrodynamics modelling technologies: A review[J]. Renewable & Sustainable Energy Reviews, 2019, 109: 482-498. |
[6] | SON D, YEUNG R W. Optimizing ocean-wave energy extraction of a dual coaxial-cylinder WEC using nonlinear model predictive control[J]. Applied Energy, 2017, 187: 746-757. |
[7] | DING H, CHEN L Q. Designs, analysis, and applications of nonlinear energy sinks[J]. Nonlinear Dynamics, 2020, 100(4): 3061-3107. |
[8] | GUO B Y, RINGWOOD J V. Modelling of a vibro-impact power take-off mechanism for wave energy conversion[C]//2020 European Control Conference. St. Petersburg, Russia: IEEE, 2020: 1348-1353. |
[9] | ZHENG Z Q, YAO Z P, CHANG Z Y, et al. A point absorber wave energy converter with nonlinear hardening spring power-take-off systems in regular waves[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2020, 234(4): 820-829. |
[10] | SHI Q J, XU D L, ZHANG H C. Performance analysis of a raft-type wave energy converter with a torsion bi-stable mechanism[J]. Energy, 2021, 227: 120388. |
[11] | ZHANG H C, ZHOU X, XU D L, et al. Nonlinear stiffness mechanism for high-efficiency and broadband raft-type wave energy converters[J]. Mechanical Systems & Signal Processing, 2022, 177: 109168. |
[12] | ZHANG H C, ZHANG J L, ZHOU X, et al. Robust performance improvement of a raft-type wave energy converter using a nonlinear stiffness mechanism[J]. International Journal of Mechanical Sciences, 2021, 211: 106776. |
[13] | YOUNESIAN D, ALAM M R. Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting[J]. Applied Energy, 2017, 197: 292-302. |
[14] | LIU B Q, YI H G, LEVI C, et al. Improved bistable mechanism for wave energy harvesting[J]. Ocean Engineering, 2021, 232: 109139. |
[15] | ZHANG X T, TIAN X L, XIAO L F, et al. Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter[J]. Applied Energy, 2018, 228: 450-467. |
[16] | LI Y, ZHANG X T, XIAO L F. Parametric study on power capture performance of an adaptive bistable point absorber wave energy converter in irregular waves[J]. Journal of Ocean Engineering & Science, 2022, 7(4): 383-398. |
[1] | 裴斐a, 林焰b. 波浪能转换器平台几何布局设计的数值研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 780-790. |
[2] | 杨庶, 钱云霄, 杨婷. 高超声速飞行器线性变参数一体化式控制律设计[J]. 上海交通大学学报, 2022, 56(11): 1427-1437. |
[3] | 姚顺, 马宁, 丁俊杰, 顾解忡. 不规则波与顺流相互作用的数值模拟与不确定度分析[J]. 上海交通大学学报, 2021, 55(3): 337-346. |
[4] | 李宏伟,庞永杰,秦再白,杨溢. 基于广义预测控制的主动吸收造波[J]. 上海交通大学学报(自然版), 2014, 48(1): 111-115. |
[5] | 封培元a,马宁a,b,顾解忡a,b. 振荡水翼波能回收在船舶节能推进中的应用[J]. 上海交通大学学报(自然版), 2013, 47(06): 923-927. |
[6] | 潘尔顺,金垚,叶亮. 基于逻辑回归的计数型质量特性健壮参数谨慎控制策略 [J]. 上海交通大学学报(自然版), 2010, 44(12): 1711-1715. |
[7] | 肖龙飞,杨建民,李俊. 浅水不规则波的无网格数值模拟[J]. 上海交通大学学报(自然版), 2008, 42(11): 1912-1918. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 329
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1920
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||