上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (1): 131-138.doi: 10.16183/j.cnki.jsjtu.2023.112
许童杰1, 刘振华1, 金怀宇1, 刘结1, 蒋秀丽1, 李哲2, 刘永生1()
收稿日期:
2023-03-28
修回日期:
2023-05-22
接受日期:
2023-05-29
出版日期:
2025-01-28
发布日期:
2025-02-06
通讯作者:
刘永生,教授;E-mail: 作者简介:
许童杰(1997—),硕士生,从事室温磁致冷工质、光纤光栅传感的研究.
基金资助:
XU Tongjie1, LIU Zhenhua1, JIN Huaiyu1, LIU Jie1, JIANG Xiuli1, LI Zhe2, LIU Yongsheng1()
Received:
2023-03-28
Revised:
2023-05-22
Accepted:
2023-05-29
Online:
2025-01-28
Published:
2025-02-06
摘要:
通过电弧熔炼法成功制备了Mn5Ge2.7Zn0.3合金,并对其相变、磁热效应和临界行为等进行研究.利用热磁曲线确定了样品的居里温度为297.2 K,等温磁化曲线发现样品没有热滞,通过M2-H/M曲线和Banerjee准则证实样品经历了二级相变,进一步根据Maxwell方程计算样品的等温熵变,场-熵的幂律关系和归一化曲线也验证了二级相变.利用modified Arrott plot(MAP)法、Kouvel-Fisher(KF)法和等温磁化(CI)法求解临界指数,并用Widom标度定律和标度方程验证了临界指数的准确性.最后利用Arrott-Noaks方程对样品的临界行为进一步分析,归一化斜率和磁相互作用距离的分析证实了样品内部磁相互作用的复杂性.
中图分类号:
许童杰, 刘振华, 金怀宇, 刘结, 蒋秀丽, 李哲, 刘永生. 室温磁致冷材料Mn5Ge2.7Zn0.3的相变、磁热效应和临界行为[J]. 上海交通大学学报, 2025, 59(1): 131-138.
XU Tongjie, LIU Zhenhua, JIN Huaiyu, LIU Jie, JIANG Xiuli, LI Zhe, LIU Yongsheng. Phase Transition, Magnetocaloric Effect, and Critical Behavior of Room Temperature Magnetic Refrigerant Material Mn5Ge2.7Zn0.3[J]. Journal of Shanghai Jiao Tong University, 2025, 59(1): 131-138.
[1] |
沈文忠. 什么将是地球上最便宜的能源?[J]. 上海交通大学学报, 2021, 55(Sup.1): 86-87.
doi: 10.16183/j.cnki.jsjtu.2021.S1.014 |
SHEN Wenzhong. What will be the cheapest energy on the earth?[J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 86-87. | |
[2] | 卓振宇, 张宁, 康重庆, 等. 面向双碳目标的电力系统规划方案量化归因分析方法[J]. 电力系统自动化, 2023, 47(2): 1-14. |
ZHUO Zhenyu, ZHANG Ning, KANG Chongqing, et al. Quantitative attribution analysis method of power system planning scheme oriented to double carbon target[J]. Automation of Electric Power Systems, 2023, 47(2): 1-14. | |
[3] |
孙欣, 严佳嘉, 谢敬东, 等. “碳中和”目标下电气互联系统有功-无功协同优化模型[J]. 上海交通大学学报, 2021, 55(12): 1554-1566.
doi: 10.16183/j.cnki.jsjtu.2021.233 |
SUN Xin, YAN Jiajia, XIE Jingdong, et al. Coordinated optimization model of active power and reactive power in power and gas systems with the objective of carbon neutrality[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1554-1566. | |
[4] | 符小坤, 舒嵘, 侯育花, 等. LaAl添加对放电等离子烧结LaFeSi磁体微观结构和磁热效应的影响[J]. 稀有金属材料与工程, 2022, 51(4): 1239-1244. |
FU Xiaokun, SHU Rong, HOU Yuhua, et al. Microstructure and magnetocaloric effect of spark plasma sintered LaFeSi magnets with LaAl addition[J]. Rare Metal Materials and Engineering, 2022, 51(4): 1239-1244. | |
[5] |
左良, 李宗宾, 闫海乐, 等. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
doi: 10.11900/0412.1961.2021.00276 |
ZUO Liang, LI Zongbin, YAN Haile, et al. Texturation and functional behaviors of polycrystalline Ni-Mn-X phase transformation alloys[J]. Acta Metallurgica Sinica, 2021, 57(11): 1396-1415.
doi: 10.11900/0412.1961.2021.00276 |
|
[6] | SI X D, SHEN Y L, MA X X, et al. Field dependence of magnetic entropy change and estimation of spontaneous magnetization in Cd substituted MnCoGe[J]. Acta Materialia, 2018, 143: 306-317. |
[7] | SI X D, LIU Y S, SHEN Y L, et al. Critical behavior and magnetocaloric effect near room temperature in MnCo1-xTixGe alloys[J]. Intermetallics, 2018, 93: 30-39. |
[8] | SYNORADZKI K, URBAN K, SKOKOWSKI P, et al. Tuning of the magnetocaloric properties of Mn5Ge3 compound by chemical modification[J]. Magnetism, 2022, 2(1): 56-73. |
[9] | WANG S B, FAN C Z, LIU D M. Large anisotropic magnetocaloric effect, wide operating temperature range, and large refrigeration capacity in single-crystal Mn5Ge3 and Mn5Ge3/Mn3.5Fe1.5Ge3 heterostructures[J]. ACS Applied Materials & Interfaces, 2021, 13(28): 33237-33243. |
[10] | ZHANDUN V, MATSYNIN A. The effect of the impurities on the magnetic, electronic and optical properties of Mn5Ge3[J]. Chinese Journal of Physics, 2020, 68: 9-18. |
[11] | TOLIŃSKI T, SYNORADZKI K. Specific heat and magnetocaloric effect of the Mn5Ge3 ferromagnet[J]. Intermetallics, 2014, 47: 1-5. |
[12] | QIAN Y T, MA X X, SI X D, et al. The analysis of magnetocaloric effect and magnetic critical behavior in Mn5Ge3-xAgx compounds[J]. Physica Scripta, 2020, 95(6): 065701. |
[13] | ZHAO F Q, DAGULA W, TEGUS O, et al. Magnetic-entropy change in Mn5Ge3-xSix alloys[J]. Journal of Alloys and Compounds, 2006, 416(1/2): 43-45. |
[14] | RATHI A, VERMA A K, GAHTORI B, et al. Field dependence of magnetic entropy change in Mn5Ge3 near room temperature[J]. Journal of Alloys and Compounds, 2021, 876: 159908. |
[15] | LIU Z H, DONG J A, LIU T T, et al. Magnetocaloric effect and critical behavior of the Mn5Ge3-xZnx alloys[J]. Physica Scripta, 2023, 98(4): 045817. |
[16] | SI X D, LIU Y S, ZHANG Z X, et al. Analysis of the magnetic transition and magnetocaloric effect in Mn5Ge2.9Ag0.1 compound[J]. Journal of Alloys and Compounds, 2019, 795: 304-313. |
[17] | SI X D, ZHOU K Y, ZHANG R, et al. Universal curve and long-range ferromagnetic order in the intermetallic compound Mn0.92Sn0.08CoGe[J]. Materials Research Express, 2018, 5(8): 086507. |
[18] | DONG J, LIU Z H, SI X D, et al. Martensitic transformation and magnetocaloric effect of Cr-doped Mn-Ni-Fe-Ti all-d-metal Heusler alloys near room temperature[J]. Solid State Communications, 2023, 362: 115099. |
[19] | LIU Y K, QIAN Y T, LIU Z H, et al. Room temperature magnetocaloric effect and electrical transport properties of Co50Fe7V25Ga18 Heusler alloys undergoing martensitic transformation[J]. Journal of Alloys and Compounds, 2023, 948: 169573. |
[20] | 生利英. 金属单质对Gd3Al2合金磁热效应的影响[J]. 金属功能材料, 2022, 29(5): 73-76. |
SHENG Liying. Influence of metallic monomers on magnetocaloric effect in Gd3Al2 alloy[J]. Metallic Functional Materials, 2022, 29(5): 73-76. | |
[21] |
LAW J Y, FRANCO V, MORENO-RAMíREZ L M, et al. A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect[J]. Nature Communications, 2018, 9: 2680.
doi: 10.1038/s41467-018-05111-w pmid: 29992958 |
[22] | 张鹏, 朴红光, 张英德, 等. 钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展[J]. 物理学报, 2021, 70(15): 157501. |
ZHANG Peng, PIAO Hongguang, ZHANG Yingde, et al. Research progress of critical behaviors and magnetocaloric effects of perovskite manganites[J]. Acta Physica Sinica, 2021, 70(15): 157501. | |
[23] | YANG T H, HE W, CHEN F K, et al. Structure, magnetic anisotropy and magnetocaloric effect of Mn5Ge3-xSix single crystals[J]. Journal of Magnetism and Magnetic Materials, 2022, 559: 169539. |
[24] | ANWAR M S, KOO B H. Investigation on magnetic critical behavior related to its magnetocaloric effect in Mn0.5Zn0.5Fe2O4 spinel ferrite[J]. Applied Physics A, 2022, 128(7): 1-8. |
[25] | NAG R, BISWAS B. Intercluster interaction and critical behavior near magnetic phase transition of electron-doped ceramic manganite Ca0.85Nd0.15MnO3[J]. Applied Physics A, 2022, 128(6): 1-12. |
[26] | JEDDI M, MASSOUDI J, GHARSALLAH H, et al. Short-range ferromagnetic order in Nd0.6Sr0.4-xKxMnO3 (x=0.2) perovskite[J]. Journal of Superconductivity and Novel Magnetism, 2022, 35(7): 1891-1898. |
[27] | BAAZAOUI M, OUMEZZINE M, CHEIKHROUHOU-KOUBAA W. Critical behavior in Ga-doped manganites La0.65Bi0.05Sr0.3Mn1-xGaxO3 (x=0 and 0.06)[J]. Physics of the Solid State, 2020, 62(2): 278-284. |
[28] | CHEN W J, HONG B, ZENG Y X, et al. Structure, magnetism, critical behavior and magnetocaloric effects of La0.66Ca0.33MnO3 porous nanospheres tuned by a solvothermal method with PVP addition[J]. Journal of Alloys and Compounds, 2023, 933: 167625. |
[29] | LIU Y, KOCH R J, HU Z X, et al. Three-dimensional Ising ferrimagnetism of Cr-Fe-Cr trimers in FeCr2Te4[J]. Physical Review B, 2020, 102(8): 085158. |
[30] | FRANCO V, BLÁZQUEZ J S, CONDE A. Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change[J]. Applied Physics Letters, 2006, 89(22): 222512. |
[1] | 胡安峰, 陈奕扬, 肖志荣, 陈正. 考虑竖向荷载作用时液化土中群桩基础水平动力响应[J]. 上海交通大学学报, 2024, 58(7): 1075-1085. |
[2] | 刘怡伶1, 张经纬1, 刘学文1, 王岩松1, 周跃亭2. 考虑轮轨接触损失的动态列车垂向Sperling指标评价模型[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1103-1115. |
[3] | 卢鹏丽1,陈云天1,廖永刚2. 基于改进多准则决策的关键蛋白质识别方案[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 418-. |
[4] | 吴怀娜, 冯东林, 刘源, 蓝淦洲, 陈仁朋. 基于门式抗浮框架的基坑开挖下卧隧道变形控制[J]. 上海交通大学学报, 2022, 56(9): 1227-1237. |
[5] | 宋深科, 夏立, 邹早建, 邹璐. 大型邮轮与集装箱船水动力相互作用数值研究[J]. 上海交通大学学报, 2022, 56(7): 919-928. |
[6] | 李宛玲, 张琪, 周香莲. 风浪荷载共同作用下的海洋桩基动力响应[J]. 上海交通大学学报, 2021, 55(9): 1116-1125. |
[7] | 王超, 刘正, 李兴, 汪春辉, 徐佩. 自由状态冰块尺寸及初始位置参数对冰桨耦合水动力性能的影响[J]. 上海交通大学学报, 2021, 55(8): 990-1000. |
[8] | 姚顺, 马宁, 丁俊杰, 顾解忡. 不规则波与顺流相互作用的数值模拟与不确定度分析[J]. 上海交通大学学报, 2021, 55(3): 337-346. |
[9] | 张忆州a, 廖晨聪a, b, 陈锦剑a, b. 椭圆余弦波作用下考虑桩身振动的桩-土相互作用[J]. 上海交通大学学报, 2019, 53(1): 85-92. |
[10] | 孔丹雅, 马哲, 王胤, 翟钢军. 二维重力式采样器触地姿态及采样率分析[J]. 海洋工程装备与技术, 2018, 5(增刊): 172-176. |
[11] | 柏君励,马宁,顾解忡. 波流对不同淹没深度水平圆柱的载荷分析[J]. 上海交通大学学报(自然版), 2018, 52(8): 938-945. |
[12] | 曹雪智,张伟楠,俞勇. 大规模网络关联研究综述[J]. 上海交通大学学报(自然版), 2018, 52(10): 1348-1356. |
[13] | 胡翔, 陈锦剑, 王建华. 短峰波作用下饱和海床中的单桩响应分析[J]. 上海交通大学学报, 2016, 50(11): 1737-1741. |
[14] | 刘承江1,王永生1,古成中2. 船-泵相互作用对喷水推进器推进性能的影响[J]. 上海交通大学学报(自然版), 2016, 50(01): 91-97. |
[15] | 单铁兵,杨建民,李欣,肖龙飞. 水流对立柱周围波浪爬升特性的影响[J]. 上海交通大学学报(自然版), 2014, 48(1): 116-124. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 414
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 344
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||