上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (6): 819-825.doi: 10.16183/j.cnki.jsjtu.2022.483
罗敏1, 杨劲锋2, 俞蕙2, 赖雨辰1, 郭杨运1, 周尚礼1, 向睿1, 童星3(), 陈潇3
收稿日期:
2022-11-28
修回日期:
2023-02-17
接受日期:
2023-03-09
出版日期:
2024-06-28
发布日期:
2024-07-05
通讯作者:
童星,博士,电话(Tel.):0755-84860840;E-mail: 作者简介:
罗敏(1985-),高级工程师,从事电动汽车与储能、用电大数据等研究.
基金资助:
LUO Min1, YANG Jinfeng2, YU Hui2, LAI Yuchen1, GUO Yangyun1, ZHOU Shangli1, XIANG Rui1, TONG Xing3(), CHEN Xiao3
Received:
2022-11-28
Revised:
2023-02-17
Accepted:
2023-03-09
Online:
2024-06-28
Published:
2024-07-05
摘要:
短期负荷预测主要用于电力系统实时调度、日前发电计划的制定,对电力系统经济调度、系统的安全运行具有重要意义.国内外在采用智能模型进行短期负荷预测方面开展了大量研究,然而智能预测方法的预测效果较易受到现存方法结构及参数的影响,以及预测对象自身个性差异使得参数难以复用,如何精准快速地获取方法结构与参数成为短期负荷预测的关键难题.对此,提出基于树结构Parzen估计器优化集成学习的短期负荷预测方法,可对方法结构与参数进行快速寻优.将该方法应用于中国南方某省短期负荷预测,以实际算例验证了其对预测精度的有效提升.
中图分类号:
罗敏, 杨劲锋, 俞蕙, 赖雨辰, 郭杨运, 周尚礼, 向睿, 童星, 陈潇. 基于树结构Parzen估计器优化集成学习的短期负荷预测方法[J]. 上海交通大学学报, 2024, 58(6): 819-825.
LUO Min, YANG Jinfeng, YU Hui, LAI Yuchen, GUO Yangyun, ZHOU Shangli, XIANG Rui, TONG Xing, CHEN Xiao. TPE-Based Boosting Short-Term Load Forecasting Method[J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 819-825.
表3
2021年5月负荷预测精度
日期 | AdaBoost-TPE | BP-ANN | 日期 | AdaBoost-TPE | BP-ANN | |
---|---|---|---|---|---|---|
5月11日 | 98.84 | 97.38 | 5月22日 | 97.81 | 96.53 | |
5月12日 | 98.21 | 97.30 | 5月23日 | 97.84 | 96.10 | |
5月13日 | 98.50 | 94.26 | 5月24日 | 98.33 | 95.42 | |
5月14日 | 98.76 | 98.45 | 5月25日 | 98.51 | 93.67 | |
5月15日 | 98.37 | 97.77 | 5月26日 | 97.65 | 95.75 | |
5月16日 | 98.29 | 96.97 | 5月27日 | 97.74 | 97.55 | |
5月17日 | 97.93 | 97.79 | 5月28日 | 97.25 | 97.08 | |
5月18日 | 98.45 | 97.52 | 5月29日 | 97.56 | 97.35 | |
5月19日 | 98.51 | 97.06 | 5月30日 | 97.73 | 96.37 | |
5月20日 | 98.73 | 96.14 | 5月31日 | 98.44 | 95.52 | |
5月21日 | 98.43 | 96.07 | 平均值 | 98.18 | 96.57 |
[1] | SAAD Z, NUR HAZIRAH A J, SUZIANA A, et al. Short-term load forecasting of 415 V, 11 kV and 33 kV electrical systems using MLP network[C]//2017 International Conference on Robotics, Automation and Sciences. Melaka, Malaysia: IEEE, 2017: 1-5. |
[2] | HE T, DONG Z Y, MENG K, et al. Accelerating Multi-layer Perceptron based short term demand forecasting using Graphics Processing Units[C]//2009 Transmission & Distribution Conference & Exposition:Asia and Pacific. Seoul, Korea: IEEE, 2009: 1-4. |
[3] | TSAKOUMIS A C, VLADOV S S, MLADENOV V M. Electric load forecasting with multilayer perceptron and Elman neural network[C]//6th Seminar on Neural Network Applications in Electrical Engineering. Belgrade, Yugoslavia: IEEE, 2002: 87-90. |
[4] | DRAGOMIR O E, DRAGOMIR F, BREZEANU I, et al. MLP neural network as load forecasting tool on short-term horizon[C]//2011 19th Mediterranean Conference on Control & Automation. Corfu, Greece: IEEE, 2011: 1265-1270. |
[5] | KONG W C, DONG Z Y, JIA Y W, et al. Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 841-851. |
[6] | RAFI S H, Al MASOOD N, DEEBA S R, et al. A short-term load forecasting method using integrated CNN and LSTM network[J]. IEEE Access, 2021, 9: 32436-32448. |
[7] | TAN M, YUAN S P, LI S H, et al. Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2937-2948. |
[8] | LI C J, DONG Z Y, DING L, et al. Interpretable memristive LSTM network design for probabilistic residential load forecasting[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(6): 2297-2310. |
[9] | SHANG C, GAO J W, LIU H B, et al. Short-term load forecasting based on PSO-KFCM daily load curve clustering and CNN-LSTM model[J]. IEEE Access, 2021, 9: 50344-50357. |
[10] | AGENG D, HUANG C Y, CHENG R G. A short-term household load forecasting framework using LSTM and data preparation[J]. IEEE Access, 9: 167911-167919. |
[11] | LIAO Z F, PAN H H, FAN X P, et al. Multiple wavelet convolutional neural network for short-term load forecasting[J]. IEEE Internet of Things Journal, 2021, 8(12): 9730-9739. |
[12] | CHEN Y, LUH P B, GUAN C, et al. Short-term load forecasting: Similar day-based wavelet neural networks[J]. IEEE Transactions on Power Systems, 2010, 25(1): 322-330. |
[13] | GUAN C, LUH P B, COOLBETH M A, et al. Very short-term load forecasting: Multilevel wavelet neural networks with data pre-filtering[C]//2009 IEEE Power & Energy Society General Meeting. Calgary, Canada: IEEE, 2009: 1-8. |
[14] | BASHIR Z, EL-HAWARY M E. Short term load forecasting by using wavelet neural networks[C]//2000 Canadian Conference on Electrical and Computer Engineering. Conference Proceedings. Navigating to a New Era (Cat. No.00TH8492). Halifax, Canada: IEEE, 2000: 163-166. |
[15] | CHEN X, DONG Z Y, MENG K, et al. Electricity price forecasting with extreme learning machine and bootstrapping[J]. IEEE Transactions on Power Systems, 2012, 27(4): 2055-2062. |
[16] | RAFIEI M, NIKNAM T, AGHAEI J, et al. Probabilistic load forecasting using an improved wavelet neural network trained by generalized extreme learning machine[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 6961-6971. |
[17] | WANG L, ZHANG Z J, CHEN J Q. Short-term electricity price forecasting with stacked denoising autoencoders[J]. IEEE Transactions on Power Systems, 2017, 32(4): 2673-2681. |
[18] | SUN W, ZHANG Y X, LI F T. The neural network model based on PSO for short-term load forecasting[C]//2006 International Conference on Machine Learning and Cybernetics. Dalian, China: IEEE, 2006: 3069-3072. |
[19] | ZHANG C Q, LIN M, TANG M Y. BP neural network optimized with PSO algorithm for daily load forecasting[C]//2008 International Conference on Information Management, Innovation Management and Industrial Engineering. Taipei, China: IEEE, 2008: 82-85. |
[20] | XU X B, LIU W X, ZHOU X, et al. Short-term load forecasting for the electric bus station based on GRA-DE-SVR[C]//2014 IEEE Innovative Smart Grid Technologies-Asia. Kuala Lumpur, Malaysia: IEEE, 2014: 388-393. |
[1] | 李恒杰, 朱江皓, 傅晓飞, 方陈, 梁达明, 周云. 基于集成学习的电动汽车充电站超短期负荷预测[J]. 上海交通大学学报, 2022, 56(8): 1004-1013. |
[2] | 钟光耀, 邰能灵, 黄文焘, 李然, 傅晓飞, 纪坤华. 基于多维聚类的配变负荷注意力短期预测方法[J]. 上海交通大学学报, 2021, 55(12): 1532-1543. |
[3] | 黄金超1,马颖华1,齐开悦2,李怡晨1,夏元轶3. 一种基于集成学习的入侵检测算法[J]. 上海交通大学学报(自然版), 2018, 52(10): 1382-1387. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||