上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (7): 845-858.doi: 10.16183/j.cnki.jsjtu.2021.377

所属专题: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题

• 新型电力系统与综合能源 • 上一篇    下一篇

基于在线LASSO VAR和EGARCH模型的风场功率集成概率预测

王鹏, 李艳婷(), 张宇   

  1. 上海交通大学 机械与动力工程学院,上海 200240
  • 收稿日期:2021-09-26 修回日期:2021-12-20 接受日期:2021-12-31 出版日期:2023-07-28 发布日期:2023-07-28
  • 通讯作者: 李艳婷 E-mail:ytli@sjtu.edu.cn
  • 作者简介:王鹏(1998-),硕士生,研究方向为数据驱动的能源预测等.
  • 基金资助:
    国家自然科学基金面上项目(72072114)

Probabilistic Forecasting of Wind Power Generation Using Online LASSO VAR and EGARCH Model

WANG Peng, LI Yanting(), ZHANG Yu   

  1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2021-09-26 Revised:2021-12-20 Accepted:2021-12-31 Online:2023-07-28 Published:2023-07-28
  • Contact: LI Yanting E-mail:ytli@sjtu.edu.cn

摘要:

由于风速波动性大,风力发电往往呈现一定的不确定性.传统风能预测模型以均值为0、方差固定的正态分布度量不确定性,但方差可能随时间变化,即具有异方差性.为提升预测精度,基于在线最小绝对收缩和选择算子的向量自回归(LASSO VAR)和指数自回归条件异方差(EGARCH)模型,提出一种考虑异方差性的风场级功率集成概率预测模型.首先使用在线LASSO VAR模型预测风力机的有功功率,再利用自回归条件异方差检验验证残差的异方差性,并利用信息冲击曲线和动态显著线评估正负残差对未来条件方差的不对称影响.然后针对异方差性和不对称性,使用EGARCH模型对单风力机有功功率的残差进行预测,得到有功功率的条件方差.最后,考虑各风力机有功功率的相关性,将风场中各风力机的有功功率求和,得到整个风场总有功功率的概率预测结果.将该方法应用于中国华东某地风场,验证了该模型能有效提高预测精度.

关键词: 在线LASSO VAR, 异方差, 指数条件异方差模型, 概率预测

Abstract:

Wind power generation has uncertainty due to the high fluctuation of wind speed. In traditional wind power prediction models, the uncertainty is measured by normal distribution with zero mean and constant variance. However, the variance may vary with time, which means the variance has heteroscedasticity. To improve the prediction accuracy, this paper proposes a new integrated probabilistic wind power prediction model for wind farm considering heteroscedasticity based on online least absolute shrinkage and selection operator and vector autoregression (LASSO VAR) and the exponential generalized autoregressive conditional heteroskedasticity (EGARCH) model. First, online LASSO VAR is used to forecast power output. Then, heteroscedasticity of residuals is validated by autoregressive conditional heteroskedasticity test. Considering heteroscedasticity, the news impact curve and dynamic significance line verify that positive and negative residuals affect future volatility asymmetrically. Thus, the EGARCH model is used to forecast the residuals to obtain the conditional variance of point prediction results. Finally, the probabilistic result of total power output is obtained by summing the power output of turbines in the wind farm considering the correlation of the active wind power of wind turbines. This method is applied to forecast the power output of a wind farm in East China and is proved effective in improving the prediction accuracy.

Key words: online least absolute shrinkage and selection operator and vector autoregression (LASSO VAR), heteroscedasticity, exponential generalized autoregressive conditional heteroskedasticity (EGARCH) model, probabilistic forecasting

中图分类号: