上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (12): 1531-1542.doi: 10.16183/j.cnki.jsjtu.2022.180
所属专题: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
• 新型电力系统与综合能源 • 下一篇
收稿日期:
2022-05-24
修回日期:
2022-07-19
接受日期:
2022-09-15
出版日期:
2023-12-28
发布日期:
2023-12-29
通讯作者:
李艳婷,副教授,博士生导师;E-mail:作者简介:
彭星皓(1998-),硕士生,研究方向为数据驱动的能源系统预测.
基金资助:
Received:
2022-05-24
Revised:
2022-07-19
Accepted:
2022-09-15
Online:
2023-12-28
Published:
2023-12-29
摘要:
与传统发电不同,风力发电具有较大的随机性与时空相关性.在风力发电并网的电力系统优化调度问题中,保障电力调度在不同风力发电功率场景中的最优执行是决策问题的关键点,因此高质量的风能场景生成非常重要.基于高斯随机过程和时空协方差函数表征风力发电站输出功率的时空相关性,由Pair Copula模型建立联合概率分布,通过经验概率逆变换方法实现具体场景.评估生成场景的多种指标,验证生成场景的优越性.基于修改的IEEE 6总线系统建立电力系统机组组合的混合整数规划模型,求解不同场景下的问题,验证场景生成方法在风力发电并网调度问题中所具有的经济性和可行性.
中图分类号:
彭星皓, 李艳婷. 基于时空协方差函数的风能场景生成方法与应用[J]. 上海交通大学学报, 2023, 57(12): 1531-1542.
PENG Xinghao, LI Yanting. Wind Power Scenario Generation Method and Application Based on Spatiotemporal Covariance Function[J]. Journal of Shanghai Jiao Tong University, 2023, 57(12): 1531-1542.
[1] | GWEC. GWEC global wind report 2022[EB/OL]. (2022-04-04)[2022-04-04]. https://gwec.net/global-wind-report-2022. |
[2] |
CHEN P Y, PEDERSEN T, BAK-JENSEN B, et al. ARIMA-based time series model of stochastic wind power generation[J]. IEEE Transactions on Power Systems, 2010, 25(2): 667-676.
doi: 10.1109/TPWRS.2009.2033277 URL |
[3] |
DÍAZ G, GÓMEZ-ALEIXANDRE J, COTO J. Wind power scenario generation through state-space specifications for uncertainty analysis of wind power plants[J]. Applied Energy, 2016, 162: 21-30.
doi: 10.1016/j.apenergy.2015.10.052 URL |
[4] | 董骁翀, 孙英云, 蒲天骄. 基于条件生成对抗网络的可再生能源日前场景生成方法[J]. 中国电机工程学报, 2020, 40(17): 5527-5536. |
DONG Xiaochong, SUN Yingyun, PU Tianjiao. Day-ahead scenario generation of renewable energy based on conditional GAN[J]. Proceedings of the CSEE, 2020, 40(17): 5527-5536. | |
[5] | 肖白, 于龙泽, 刘洪波, 等. 基于生成虚拟净负荷的多能源电力系统日前优化调度[J]. 中国电机工程学报, 2021, 41(21): 7237-7249. |
XIAO Bai, YU Longze, LIU Hongbo, et al. Day ahead optimal dispatch of multi-energy power system based on generating virtual net load[J]. Proceedings of the CSEE, 2021, 41(21): 7237-7249. | |
[6] | CHEN Y Z, WANG Y S, KIRSCHEN D, et al. Model-free renewable scenario generation using generative adversarial networks[C]// 2019 IEEE Power & Energy Society General Meeting. Atlanta, USA: IEEE, 2019: 1. |
[7] |
ZHANG Y F, AI Q, XIAO F, et al. Typical wind power scenario generation for multiple wind farms using conditional improved Wasserstein generative adversarial network[J]. International Journal of Electrical Power & Energy Systems, 2020, 114: 105388.
doi: 10.1016/j.ijepes.2019.105388 URL |
[8] |
PINSON P, MADSEN H, NIELSEN H A, et al. From probabilistic forecasts to statistical scenarios of short-term wind power production[J]. Wind Energy, 2009, 12(1): 51-62.
doi: 10.1002/we.v12:1 URL |
[9] | 唐锦, 张书怡, 吴秋伟, 等. 基于Copula函数与等概率逆变换的风电出力场景生成方法[J]. 电力工程技术, 2021, 40(6): 86-94. |
TANG Jin, ZHANG Shuyi, WU Qiuwei, et al. Wind power output scenario generation method based on Copula function and equal probability inverse transformation[J]. Electric Power Engineering Technology, 2021, 40(6): 86-94. | |
[10] |
CAI D F, SHI D Y, CHEN J F. Probabilistic load flow computation with polynomial normal transformation and Latin hypercube sampling[J]. IET Generation, Transmission & Distribution, 2013, 7(5): 474-482.
doi: 10.1049/gtd2.v7.5 URL |
[11] |
PAPAEFTHYMIOU G, KLOCKL B. MCMC for wind power simulation[J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 234-240.
doi: 10.1109/TEC.2007.914174 URL |
[12] | 赵鉴, 袁渤巽, 于浩, 等. 基于风光不确定性和相关性的场景生成[J]. 能源与节能, 2021(8): 8-12. |
ZHAO Jian, YUAN Boxun, YU Hao, et al. Scene generation based on uncertainty and correlation of wind and photovoltaic power[J]. Energy and Energy Conservation, 2021(8): 8-12. | |
[13] |
LI J H, ZHU D L. Combination of moment-matching, Cholesky and clustering methods to approximate discrete probability distribution of multiple wind farms[J]. IET Renewable Power Generation, 2016, 10(9): 1450-1458.
doi: 10.1049/rpg2.v10.9 URL |
[14] |
LI B H, SEDZRO K, FANG X, et al. A clustering-based scenario generation framework for power market simulation with wind integration[J]. Journal of Renewable and Sustainable Energy, 2020, 12(3): 036301.
doi: 10.1063/5.0006480 URL |
[15] |
WANG Z, WANG W S, LIU C, et al. Forecasted scenarios of regional wind farms based on regular vine copulas[J]. Journal of Modern Power Systems and Clean Energy, 2019, 8(1): 77-85.
doi: 10.35833/MPCE.2017.000570 URL |
[16] |
MA X Y, SUN Y Z, FANG H L. Scenario generation of wind power based on statistical uncertainty and variability[J]. IEEE Transactions on Sustainable Energy, 2013, 4(4): 894-904.
doi: 10.1109/TSTE.2013.2256807 URL |
[17] |
TAN J, WU Q W, ZHANG M L, et al. Wind power scenario generation with non-separable spatio-temporal covariance function and fluctuation-based clustering[J]. International Journal of Electrical Power & Energy Systems, 2021, 130: 106955.
doi: 10.1016/j.ijepes.2021.106955 URL |
[18] |
DENG J C, LI H R, HU J X, et al. A new wind speed scenario generation method based on spatiotemporal dependency structure[J]. Renewable Energy, 2021, 163: 1951-1962.
doi: 10.1016/j.renene.2020.10.132 URL |
[19] |
DRAXL C, CLIFTON A, HODGE B M, et al. The wind integration national dataset (WIND) toolkit[J]. Applied Energy, 2015, 151: 355-366.
doi: 10.1016/j.apenergy.2015.03.121 URL |
[20] |
GNEITING T. Nonseparable, stationary covariance functions for space-time data[J]. Journal of the American Statistical Association, 2002, 97(458): 590-600.
doi: 10.1198/016214502760047113 URL |
[21] | ABDI H. The Kendall rank correlation coefficient[C]// SALKIND N J. Encyclopedia of Measurement and Statistics. California, USA: Sage, 2006: 508-510. |
[22] | SKLAR A. Random variables, joint distribution functions, and copulas[J]. Kybernetika, 1973, 9(6): 449-460. |
[23] |
SAMPSON P D, GUTTORP P. Nonparametric estimation of nonstationary spatial covariance structure[J]. Journal of the American Statistical Association, 1992, 87(417): 108-119.
doi: 10.1080/01621459.1992.10475181 URL |
[24] | KRUSKAL J B, WISH M. Multidimensional scaling[M]. London: Sage, 1978. |
[25] |
VILLANUEVA D, FEIJÓO A. Wind power distributions: A review of their applications[J]. Renewable and Sustainable Energy Reviews, 2010, 14(5): 1490-1495.
doi: 10.1016/j.rser.2010.01.005 URL |
[26] |
HERSBACH H. Decomposition of the continuous ranked probability score for ensemble prediction systems[J]. Weather and Forecasting, 2000, 15(5): 559-570.
doi: 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2 URL |
[27] |
SCHEUERER M, HAMILL T M. Variogram-based proper scoring rules for probabilistic forecasts of multivariate quantities[J]. Monthly Weather Review, 2015, 143(4): 1321-1334.
doi: 10.1175/MWR-D-14-00269.1 URL |
[28] |
HOLTTINEN H, TUOHY A, MILLIGAN M, et al. The flexibility workout: Managing variable resources and assessing the need for power system modification[J]. IEEE Power and Energy Magazine, 2013, 11(6): 53-62.
doi: 10.1109/MPE.2013.2278000 URL |
[29] | 江婷, 邓晖, 陆承宇, 等. 电能量和旋转备用市场下电-热综合能源系统低碳优化运行[J]. 上海交通大学学报, 2021, 55(12): 1650-1662. |
JIANG Ting, DENG Hui, LU Chengyu, et al. Low-carbon optimal operation of an integrated electricity-heat energy system in electric energy and spinning reserve market[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1650-1662. | |
[30] |
LIU F, BIE Z H, LIU S Y, et al. Day-ahead optimal dispatch for wind integrated power system considering zonal reserve requirements[J]. Applied Energy, 2017, 188: 399-408.
doi: 10.1016/j.apenergy.2016.11.102 URL |
[31] |
NASROLAHPOUR E, KAZEMPOUR J, ZAREIPOUR H, et al. A bilevel model for participation of a storage system in energy and reserve markets[J]. IEEE Transactions on Sustainable Energy, 2018, 9(2): 582-598.
doi: 10.1109/TSTE.2017.2749434 URL |
[32] |
ZHANG M L, AI X M, FANG J K, et al. A systematic approach for the joint dispatch of energy and reserve incorporating demand response[J]. Applied Energy, 2018, 230: 1279-1291.
doi: 10.1016/j.apenergy.2018.09.044 URL |
[1] | 米阳, 吴继伟, 田书欣, 马思源, 王育飞. 考虑个体自私的热电联产系统完全分布式经济调度[J]. 上海交通大学学报, 2024, 58(1): 50-58. |
[2] | 卫慧, 陈鹏, 张芮菡, 程正顺. 基于长短期记忆网络的大型漂浮式风力发电机平台运动极短期预报方法[J]. 上海交通大学学报, 2023, 57(S1): 37-45. |
[3] | 刘新宇, 王森, 曾龙, 原绍恒, 郝正航, 逯芯妍. 双馈风电场抑制电网低频振荡的自适应附加控制策略[J]. 上海交通大学学报, 2023, 57(9): 1156-1164. |
[4] | 陈熠, 王晗, 徐潇源, 胡友琳, 严正, 曾丹, 冯凯. 省间-省内两级市场协调下两阶段分布鲁棒经济调度模型[J]. 上海交通大学学报, 2023, 57(9): 1114-1125. |
[5] | 奚鑫泽, 邢超, 覃日升, 何廷一, 和鹏, 孟贤, 程春辉. 含双馈风力发电系统的配电网短路电流特性[J]. 上海交通大学学报, 2023, 57(7): 921-927. |
[6] | 刘子旭, 米阳, 卢长坤, 符杨, 苏向敬. 计及需求响应和风力发电消纳的电-热系统低碳优化调度[J]. 上海交通大学学报, 2023, 57(7): 835-844. |
[7] | 顾慧杰, 彭超逸, 孙书豪, 刘明涛, 谢俊, 施雄华, 鲍永. 风电-光伏-电制氢-抽蓄零碳电力系统短期生产模拟模型[J]. 上海交通大学学报, 2023, 57(5): 505-512. |
[8] | 彭思佳, 邢海军, 成明洋. 多重不确定环境下考虑阶梯型碳交易的虚拟电厂低碳经济调度[J]. 上海交通大学学报, 2023, 57(12): 1571-1582. |
[9] | 刘新宇, 逯芯妍, 曾龙, 郝正航, 赵起放, 李现伟, 郝同盟. 双馈风电场并网抑制频率振荡控制策略[J]. 上海交通大学学报, 2022, 56(3): 303-311. |
[10] | 沈阳武, 宋兴荣, 罗紫韧, 沈非凡, 黄晟. 基于模型预测控制的分布式储能型风力发电场惯性控制策略[J]. 上海交通大学学报, 2022, 56(10): 1285-1293. |
[11] | 陆秋瑜, 于珍, 杨银国, 李力. 考虑源荷功率不确定性的海上风力发电多微网两阶段优化调度[J]. 上海交通大学学报, 2022, 56(10): 1308-1316. |
[12] | 巩伟峥, 许凌, 姚寅. 计及风速分布与机组惯量转化不确定性的风电场可用惯量估计[J]. 上海交通大学学报, 2021, 55(S2): 51-59. |
[13] | 金皓纯, 葛敏辉, 徐波. 基于极限学习机的双馈感应风力发电机综合自适应调频参数优化方法[J]. 上海交通大学学报, 2021, 55(S2): 42-50. |
[14] | 吕祥梅, 刘天琪, 刘绚, 何川, 南璐, 曾红. 考虑高比例新能源消纳的多能源园区日前低碳经济调度[J]. 上海交通大学学报, 2021, 55(12): 1586-1597. |
[15] | 李卓, 时庆峰, 王欣, 高彦泽, 施蕊. 低温红外场景生成技术研究[J]. 空天防御, 2020, 3(4): 1-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||