上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (11): 1410-1420.doi: 10.16183/j.cnki.jsjtu.2022.189
所属专题: 《上海交通大学学报》2023年“船舶海洋与建筑工程”专题
孙哲1(), 眭旭鹏1, KOROBKIN Alexander2, 邓彦增3, 张桂勇1, 宗智1, 姜宜辰1
收稿日期:
2022-06-01
修回日期:
2022-10-30
接受日期:
2022-11-10
出版日期:
2023-11-28
发布日期:
2023-12-01
作者简介:
孙 哲(1986-),副教授,主要从事粒子类无网格计算方法、水弹性流固耦合问题方面研究;E-mail: 基金资助:
SUN Zhe1(), SUI Xupeng1, KOROBKIN Alexander2, DENG Yanzeng3, ZHANG Guiyong1, ZONG Zhi1, JIANG Yichen1
Received:
2022-06-01
Revised:
2022-10-30
Accepted:
2022-11-10
Online:
2023-11-28
Published:
2023-12-01
摘要:
将各类砰击入水的解析理论模型与时域上的精细积分法相结合,研究了在自由落体状态下具有任意对称形状的二维结构物的砰击过程.通过对解析理论模型的数学表达式进行分析,物体所受的砰击力可以分解为两项,分别为速度相关项和加速度相关项.将本文提出的模型与试验和其他数值模拟方法进行对比,验证结果良好.此外,针对轻质结构物或者具有较大入水速度的物体,可以合理地忽略自身的重力,那么对于指定形状和质量的二维物体,自由落体状态下其在砰击过程中的最大加速度或砰击力峰值总是发生在同一个浸没深度处,而与初始的入水速度无关.
中图分类号:
孙哲, 眭旭鹏, KOROBKIN Alexander, 邓彦增, 张桂勇, 宗智, 姜宜辰. 自由落体状态下二维结构物砰击载荷计算[J]. 上海交通大学学报, 2023, 57(11): 1410-1420.
SUN Zhe, SUI Xupeng, KOROBKIN Alexander, DENG Yanzeng, ZHANG Guiyong, ZONG Zhi, JIANG Yichen. Dynamic Characteristics of Two-Dimensional Structures Slamming Under Free Fall Condition[J]. Journal of Shanghai Jiao Tong University, 2023, 57(11): 1410-1420.
[1] |
LAVROFF J, DAVIS M R, HOLLOWAY D S, et al. Wave impact loads on wave-piercing catamarans[J]. Ocean Engineering, 2017, 131: 263-271.
doi: 10.1016/j.oceaneng.2016.11.015 URL |
[2] | VON KARMAN T. The impact on seaplane floats during landing[R]. Washington, USA: National Advisory Committee for Aeronautics, 1929. |
[3] |
WAGNER H. Uber stoss-und gleitvorgange an der oberflache von flussigkeiten[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193-215.
doi: 10.1002/zamm.v12:4 URL |
[4] |
DOBROVOL’SKAYA Z N. On some problems of similarity flow of fluid with a free surface[J]. Journal of Fluid Mechanics, 1969, 36(4): 805-829.
doi: 10.1017/S0022112069001996 URL |
[5] | ZHAO R, FALTINSEN O, AARSNES J. Water entry of arbitrary two-dimensional sections with and without separation[C]// 21st Symposium on Naval Hydrodynamics. Washington, USA: The National Academies Press, 1996: 408-423. |
[6] | COINTE R, ARMAND J L. Hydrodynamic impact analysis of a cylinder[J]. Journal of Offshore Mechanics Arctic Engineering, 1987, 107: 237-243. |
[7] |
HOWISON S D, OCKENDON J R, WILSON S K. Incompressible water-entry problems at small deadrise angles[J]. Journal of Fluid Mechanics, 1991, 222: 215-230.
doi: 10.1017/S0022112091001076 URL |
[8] | OLIVER M J. Water entry and related problems[D]. Oxford, UK: University of Oxford, 2002. |
[9] | 段文洋, 朱鑫, 倪阳, 等. 考虑流动分离的有限宽楔形剖面匀速入水受力分析[J]. 船舶力学, 2013, 17(8): 911-919. |
DUAN Wenyang, ZHU Xin, NI Yang, et al. Constant velocity water entry of finite wedge section with flow separation[J]. Journal of Ship Mechanics, 2013, 17(8): 911-919. | |
[10] |
TASSIN A, PIRO D J, KOROBKIN A A, et al. Two-dimensional water entry and exit of a body whose shape varies in time[J]. Journal of Fluids and Structures, 2013, 40: 317-336.
doi: 10.1016/j.jfluidstructs.2013.05.002 URL |
[11] | KOROBKIN A A. Water impact problems in ship hydrodynamics[M]. Southampton, UK: Computational Mechanics Publications, 1996. |
[12] | KOROBKIN A A. Formulation of penetration problem as a variational inequality[J]. Dinamika Sploshnoi Sredy, 1982, 58: 73-79. |
[13] |
KOROBKIN A A, PUKHNACHOV V V. Initial stage of water impact[J]. Annual Review of Fluid Mechanics, 1988, 20(1): 159-185.
doi: 10.1146/fluid.1988.20.issue-1 URL |
[14] | PANCIROLI R, PORFIRI M. Evaluation of the pressure field on a rigid body entering a quiescent fluid through particle image velocimetry[J]. Experiments in Fluids, 2013, 54: 1360. |
[15] |
PANCIROLI R, PORFIRI M. Analysis of hydroelastic slamming through particle image velocimetry[J]. Journal of Sound and Vibration, 2015, 347: 63-78.
doi: 10.1016/j.jsv.2015.02.007 URL |
[16] |
BARJASTEH M, ZERAATGAR H, JAVAHERIAN M J. An experimental study on water entry of asymmetric wedges[J]. Applied Ocean Research, 2016, 58: 292-304.
doi: 10.1016/j.apor.2016.04.013 URL |
[17] |
SHAMS A, JALALISENDI M, PORFIRI M. Experiments on the water entry of asymmetric wedges using particle image velocimetry[J]. Physics of Fluids, 2015, 27(2): 027103.
doi: 10.1063/1.4907745 URL |
[18] |
RUSSO S, JALALISENDI M, FALCUCCI G, et al. Experimental characterization of oblique and asymmetric water entry[J]. Experimental Thermal and Fluid Science, 2018, 92: 141-161.
doi: 10.1016/j.expthermflusci.2017.10.028 URL |
[19] | AARSNES J V. Drop test with ship sections-effect of roll angle[R]. Trondheim, Norway: Norwegian Marine Technology Research Institute, 1996. |
[20] | SUN H. A boundary element method applied to strongly nonlinear wave-body interaction problems[D]. Trondheim, Norway: Norwegian University of Science and Technology, 2007. |
[21] | ZHU X Y. Application of the CIP method to strongly nonlinear wave-body interaction problems[D]. Trondheim, Norway: Norwegian University of Science and Technology, 2006. |
[22] |
BAO C M, WU G X, XU G. Water entry of a finite width wedge near a floating body[J]. Applied Ocean Research, 2019, 84: 12-31.
doi: 10.1016/j.apor.2019.01.002 |
[23] |
WU G X, SUN H, HE Y S. Numerical simulation and experimental study of water entry of a wedge in free fall motion[J]. Journal of Fluids and Structures, 2004, 19(3): 277-289.
doi: 10.1016/j.jfluidstructs.2004.01.001 URL |
[24] | XU G D, DUAN W Y, WU G X. Simulation of water entry of a wedge through free fall in three degrees of freedom[J]. Proceedings of the Royal Society A, 2010, 466: 2219-2239. |
[25] |
KOROBKIN A A. Analytical models of water impact[J]. European Journal of Applied Mathematics, 2004, 15(6): 821-838.
doi: 10.1017/S0956792504005765 URL |
[26] |
TASSIN A, JACQUES N, EL MALKI, et al. Assessment and comparison of several analytical models of water impact[J]. The International Journal of Multiphysics, 2010, 4(2): 125-140.
doi: 10.1260/1750-9548.4.2.125 URL |
[27] |
KOROBKIN A A, KHABAKHPASHEVA T, MALENICA S, et al. A comparison study of water impact and water exit models[J]. International Journal of Naval Architecture and Ocean Engineering, 2014, 6(4): 1182-1196.
doi: 10.2478/IJNAOE-2013-0238 URL |
[28] | LOGVINOVICH G V. Hydrodynamics of flows with free boundaries[R]. Washington, USA: U. S. Department of Commerce, 1972. |
[29] |
ZHONG W X. On precise integration method[J]. Journal of Computational and Applied Mathematics, 2004, 163(1): 59-78.
doi: 10.1016/j.cam.2003.08.053 URL |
[30] | 吕和祥, 于洪洁, 裘春航. 精细积分的非线性动力学积分方程及其解法[J]. 固体力学学报, 2001, 22(3): 303-308. |
LV Hexiang, YU Hongjie, QIU Chunhang. An integral equation of non-linear dynamics and its solution method[J]. Acta Mechanica Solida Sinica, 2001, 22(3): 303-308. | |
[31] |
KOROBKIN A A. The entry of an elliptical paraboloid into a liquid at variable velocity[J]. Journal of Applied Mathematics and Mechanics, 2002, 66(1): 39-48.
doi: 10.1016/S0021-8928(02)00006-0 URL |
[32] |
SCOLAN Y M, KOROBKIN A A. Energy distribution from vertical impact of a three-dimensional solid body onto the flat free surface of an ideal fluid[J]. Journal of Fluids and Structures, 2003, 17(2): 275-286.
doi: 10.1016/S0889-9746(02)00118-4 URL |
[33] | KOROBKIN A A, MALENICA Š. Modified Logvinovich model for hydrodynamic loads on asymmetric contours entering water[C]//Grue J. 20th International Workshop on Water Waves and Floating Bodies. Longyearbyen, Norway: University of Oslo, 2005: 50-54. |
[1] | 陈拴, 吴怀娜, 陈仁朋, 沈水龙, 刘源. 上方长距离基坑开挖引起的共线隧道变形研究[J]. 上海交通大学学报, 2021, 55(6): 698-706. |
[2] | 赵雷雷,于曰伟,周长城,杨福兴. 路面随机激励下康复机器人轮椅的抑振解析[J]. 上海交通大学学报, 2019, 53(12): 1502-1507. |
[3] | 蒲祺龙,周翔. 超弹性记忆合金螺旋结构径向变形的理论分析[J]. 上海交通大学学报(自然版), 2018, 52(4): 410-418. |
[4] | 吴泽玉1,2,王东炜3,汪志昊2,宋力1,费小霞4. 流固耦合问题的精细积分求解法[J]. 上海交通大学学报(自然版), 2017, 51(6): 756-760. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||