上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (7): 1130-1138.doi: 10.16183/j.cnki.jsjtu.2022.466
• 船舶海洋与建筑工程 • 上一篇
周练1,2, 张凯3,4, 徐涵3,4, 王斐亮3,4, 章一萍1,2, 唐丽娜1,2, 杨健3,4()
收稿日期:
2022-11-21
修回日期:
2023-02-07
接受日期:
2023-02-15
出版日期:
2024-07-28
发布日期:
2024-07-26
通讯作者:
杨 健,教授,博士生导师;E-mail: j.yang.1@sjtu.edu.cn.
作者简介:
周 练(1987-),高级工程师,主要从事装配式结构等新型结构体系研究.
基金资助:
ZHOU Lian1,2, ZHANG Kai3,4, XU Han3,4, WANG Feiliang3,4, ZHANG Yiping1,2, TANG Lina1,2, YANG Jian3,4()
Received:
2022-11-21
Revised:
2023-02-07
Accepted:
2023-02-15
Online:
2024-07-28
Published:
2024-07-26
摘要:
隐框玻璃幕墙连接用的硅酮结构胶发生损伤导致玻璃面板坠落是当前幕墙服役过程中的常见问题.现有研究大多采用动力学方法对幕墙的脱胶损伤进行检测和评估,该方法通常需要额外施加荷载激励,且测量的动力响应数据易受环境影响,难以实现幕墙安全状态的可靠评估.为解决上述问题,提出在负风压作用下利用玻璃面板的挠度和转角对玻璃面板的脱胶损伤进行检测和评估的方法.首先,设计一系列隐框玻璃幕墙脱胶损伤实验,验证了在风荷载作用下利用挠度和转角对玻璃面板的安全状态进行检测的可行性;之后,基于实验结果构建了隐框玻璃幕墙安全风险监测评估系统,实现玻璃面板脱胶位置和数量的实时监测和快速识别.
中图分类号:
周练, 张凯, 徐涵, 王斐亮, 章一萍, 唐丽娜, 杨健. 负风压作用下隐框玻璃幕墙承载行为和脱胶损伤实验研究[J]. 上海交通大学学报, 2024, 58(7): 1130-1138.
ZHOU Lian, ZHANG Kai, XU Han, WANG Feiliang, ZHANG Yiping, TANG Lina, YANG Jian. Experimental Study on Bearing Behavior and Debonding Damage of Hidden Frame Glass Curtain Walls Under Negative Wind Pressure[J]. Journal of Shanghai Jiao Tong University, 2024, 58(7): 1130-1138.
[1] | HONG X, LIU Y, LIUFU Y, et al. Debonding detection in hidden frame supported glass curtain walls using the nonlinear ultrasonic modulation method with piezoceramic transducers[J]. Sensors, 2018, 18(7): 2094. |
[2] | HONG X, LIN J, LIU Y, et al. Active thermal sensing for bonding structure damage detection of hidden frame glass curtain wall[J]. Sensors, 2018, 18(11): 3594. |
[3] | 刘军进, 李建辉, 丁磊, 等. 既有建筑幕墙安全性检测及评价的研究现状与发展[J]. 施工技术, 2013, 42(24): 9-14. |
LIU Junjin, LI Jianhui, DING Lei, et al. Research and development in safe inspection and evaluation for existing building curtain walls[J]. Construction Technology, 2013, 42(24): 9-14. | |
[4] | 李芊, 杜少英. 既有玻璃幕墙安全风险预警机制研究[J]. 施工技术, 2016, 45(3): 96-100. |
LI Qian, DU Shaoying. Study on early-warning mechanism of risk of existing glass curtain walls[J]. Construction Technology, 2016, 45(3): 96-100. | |
[5] | HONG X, LIN J, REN Z. Active IR thermography for bonding interface damage of glass curtain walls[C]//2021 7th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations. Guangzhou, China: IEEE, 2021: 72-75. |
[6] | LIN J, HONG X, REN Z, et al. Scanning laser in-depth heating infrared thermography for deep debonding of glass curtain walls structural adhesive[J]. Measurement, 2022, 192: 110902. |
[7] | HONG X, LIU Y, LIN P, et al. Interfacial adhesion-strength detection of structural silicone sealant for hidden frame-supported glass curtain wall based on nonlinear ultrasonic lamb wave[J]. Journal of Aerospace Engineering, 2018, 31(5): 04018047. |
[8] | 刘小根, 包亦望, 宋一乐, 等. 基于动态法对既有玻璃幕墙安全性能评估研究[J]. 土木工程学报, 2009, 42(12): 11-15. |
LIU Xiaogen, BAO Yiwang, SONG Yile, et al. Safety evaluation of glass curtain walls by using dynamic method[J]. China Civil Engineering Journal, 2009, 42(12): 11-15. | |
[9] | 刘小根, 包亦望. 基于固有频率变化的框支承玻璃幕墙安全评估[J]. 沈阳工业大学学报, 2011, 33(5): 595-600. |
LIU Xiaogen, BAO Yiwang. Safety evaluation for frame supported glass curtain wall based on natural frequency change[J]. Journal of Shenyang University of Technology, 2011, 33(5): 595-600. | |
[10] | 陈振宇, 骆英, 顾建祖. 一种基于FFT功率谱的全隐框玻璃幕墙结构胶脱粘长度检测方法[J]. 四川建筑科学研究, 2009, 35(2): 104-107. |
CHEN Zhenyu, LUO Ying, GU Jianzu. New damage detection method of structural silicone sealant in hidden frame supported glass curtain wall based on FFT power spectrum[J]. Sichuan Building Science, 2009, 35(2): 104-107. | |
[11] | MIAO Y, YIN J, CAI G, et al. New measurement technology of structural silicone sealant in hidden frame supported glass curtain wall based on FFT power spectrum[C]//2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring. Changsha, China: IEEE, 2011: 92-95. |
[12] | 郑恒, 张喜臣, 王洪涛, 等. 基于原点频响函数的建筑玻璃幕墙粘接结构损伤检测[J]. 振动与冲击, 2021, 40(13): 289-298. |
ZHENG Heng, ZHANG Xichen, WANG Hongtao, et al. Damage detection of bonded structure of building glass curtain wall based on origin FRF[J]. Journal of Vibration and Shock, 2021, 40(13): 289-298. | |
[13] | PAN D, JIANG K, ZHANG X, et al. Sealant delamination detection of structural sealant glazing systems based on driving-point accelerance[J]. Shock and Vibration, 2020, 5: 1-13. |
[14] | 江坤, 潘旦光, 张喜臣, 等. 基于边界模态的结构密封胶损伤识别实验研究[J]. 工程力学, 2022, 39 (Sup.1): 350-355. |
JIANG Kun, PAN Danguang, ZHANG Xichen, et al. Test study on damage ide.pngication of structural sealant based on boundary modal[J]. Engineering Mechanics, 2022, 39 (Sup.1): 350-355. | |
[15] | 徐涵, 杨健, 王星尔, 等. 反向传播神经网络在隐框玻璃幕墙脱胶损伤识别中的应用[J]. 硅酸盐学报, 2019, 47(8): 1073-1079. |
XU Han, YANG Jian, WANG Xinger, et al. Application of back propagation neural network on debonding prediction of glass curtain walls with concealed frames[J]. Journal of the Chinese Ceramic Society, 2019, 47(8): 1073-1079. | |
[16] | HUANG Z, XIE M, ZHAO J, et al. Rapid evaluation of safety-state in hidden-frame supported glass curtain walls using remote vibration measurement[J]. Journal of Building Engineering, 2018, 19: 91-97. |
[17] | HUANG Z, XIE M, SONG H, et al. Modal analysis related safety-state evaluation of hidden frame supported glass curtain wall[J]. Journal of Building Engineering, 2018, 20: 671-678. |
[18] | CHEN C, XIE M, DU Y, et al. A new method of safety detection in high-rise building curtain walls based on natural vibration frequency[C]//IOP Conference Series: Earth and Environmental Science. Zhuhai, China: IOP Publishing, 2021: 012092. |
[19] | ZHENG D, BAO Y, LIU X. Determining structural damage of stone curtain walls by dynamic method[C]//IOP Conference Series: Materials Science and Engineering. Kunming, China: IOP Publishing, 2019: 012026. |
[20] | EFSTATHIADES C, BANIOTOPOULOS C C, NAZARKO P, et al. Application of neural networks for the structural health monitoring in curtain-wall systems[J]. Engineering Structures, 2007, 29(12): 3475-3484. |
[21] | 全国轻质与装饰装修建筑材料标准化技术委员会. 建筑用硅酮结构密封胶: GB 16776—2005[S]. 北京: 中国标准出版社, 2005. |
Constructional Materials and Decorative Materials. Structural silicon sealants for building: GB 16776—2005[S]. Beijing: Standards Press of China, 2005. |
[1] | 刘小波, 陆韵, 张鑫, 徐华松. 基于风洞试验和CFD计算的折叠翼气动特性研究[J]. 空天防御, 2021, 4(1): 77-82. |
[2] | 高亿文, 李明广, 陈锦剑. 超载影响下围护结构非对称基坑的受力及变形特性分析[J]. 上海交通大学学报, 2020, 54(6): 643-651. |
[3] | 秦峰, 赵洪峰, 刘伟鹏. 基于波束指向对准的空空导弹短报文数据链技术研究[J]. 空天防御, 2019, 2(2): 16-22. |
[4] | 李冬,张辰,王福新,刘洪. 结冰对带舵面翼型流场的影响及其气动参数分析[J]. 上海交通大学学报(自然版), 2017, 51(3): 367-. |
[5] | 熊鹰1,盛立2,杨勇1. 吊舱式推进器偏转工况下水动力性能[J]. 上海交通大学学报(自然版), 2013, 47(06): 956-961. |
[6] | 黄钟灵1, 郭常宁1, 石宝枢2. 球笼式等速万向节圆周间隙分析[J]. 上海交通大学学报(自然版), 2011, 45(09): 1269-1274. |
[7] | 高万茹,程先华. 等通道转角挤压对铝青铜力学性能的影响 [J]. 上海交通大学学报(自然版), 2011, 45(01): 35-0039. |
[8] | 李伟,何其昌,范秀敏,. 基于汽车操纵信号的驾驶员疲劳状态检测[J]. 上海交通大学学报(自然版), 2010, 44(02): 292-0296. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||