上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (4): 403-411.doi: 10.16183/j.cnki.jsjtu.2021.401

所属专题: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题

• 新型电力系统与综合能源 • 上一篇    下一篇

局部频率测量数据驱动的电力系统功率缺额在线评估方法

唐震1(), 郝丽花1, 冯静2   

  1. 1.国网山西省电力公司 电力科学研究院,太原 030001
    2.中国电力科学研究院有限公司,北京 100192
  • 收稿日期:2021-10-12 修回日期:2022-04-05 接受日期:2022-04-25 出版日期:2023-04-28 发布日期:2023-05-05
  • 作者简介:唐 震(1966-),教授级高级工程师,从事继电保护试验研究、电力系统仿真分析研究.电话(Tel.):0351-4263031;E-mail:tangzhen@sx.sgcc.cn.
  • 基金资助:
    国网山西省电力公司电力科学研究院科学技术项目(52053020002S)

Online Estimation of Power Shortage in Power Systems Driven by Local Frequency Measurement Data

TANG Zhen1(), HAO Lihua1, FENG Jing2   

  1. 1. Electric Power Research Institute, State Grid Shanxi Electric Power Company, Taiyuan 030001, China
    2. China Electric Power Research Institute, Beijing 100192, China
  • Received:2021-10-12 Revised:2022-04-05 Accepted:2022-04-25 Online:2023-04-28 Published:2023-05-05

摘要:

随着新能源并网比例的不断提高,新型电力系统的惯量及频率支撑能力不断降低,导致系统在遭受扰动时易出现频率崩溃,因此需要对扰动后系统功率缺额进行快速准确评估以用于功率缺额的快速填补.提出了一种局部频率测量数据驱动的基于深度卷积和长短期记忆复合神经网络的系统功率缺额在线评估方法.首先,由于同步测量获取实际惯量中心 (COI) 频率无法适应在线评估的快速性,所以利用局部测量频率估算得到COI频率,避免了复杂通信造成的延时效应;然后设计了一种深度复合神经网络,挖掘海量频率数据和功率缺额间的关联信息;最后搭建39节点系统进行仿真验证,结果显示了所提方法的有效性和快速性.

关键词: 新型电力系统, 频率响应, 复合神经网络, 惯量中心, 数据驱动

Abstract:

With the growing penetration of renewable generation, the inertia and frequency support ability of the renewable-dominated power system are continuously reduced, which leads to frequency collapse when the system is disturbed. Therefore, it is of great significance to promptly and accurately evaluate the power shortage after a major disturbance to fill the power shortage quickly. This paper proposes an online estimation approach of power shortage in power system based on deep convolution and long-short term memory composite neural network driven by local frequency measurement data. First, since using the synchronous measurements to obtain the frequency of center of inertia (COI) cannot adapt to the rapidity of online estimation, this paper employs the local frequency measurements to estimate the COI frequency, avoiding the delay effect caused by the complex communication. Then, it designs a deep composite neural network to mine the correlation information between massive frequency data and power shortage. Finally, it tests the simulations on a 39-bus system to verify the effectiveness of the proposed approach. The results demonstrate that the proposed approach is effective and fast.

Key words: renewable-dominated power system, frequency response, composite neural network, center of inertia (COI), data-driven

中图分类号: